in models/networks.py [0:0]
def unet_upconv(input_nc, output_nc, outermost=False, norm_layer=nn.BatchNorm2d):
upconv = nn.ConvTranspose2d(input_nc, output_nc, kernel_size=4, stride=2, padding=1)
uprelu = nn.ReLU(True)
upnorm = norm_layer(output_nc)
if not outermost:
return nn.Sequential(*[upconv, upnorm, uprelu])
else:
return nn.Sequential(*[upconv, nn.Sigmoid()])