def create_optimizer()

in train.py [0:0]


def create_optimizer(nets, opt):
    (net_visual, net_audio) = nets
    param_groups = [{'params': net_visual.parameters(), 'lr': opt.lr_visual},
                    {'params': net_audio.parameters(), 'lr': opt.lr_audio}]
    if opt.optimizer == 'sgd':
        return torch.optim.SGD(param_groups, momentum=opt.beta1, weight_decay=opt.weight_decay)
    elif opt.optimizer == 'adam':
        return torch.optim.Adam(param_groups, betas=(opt.beta1,0.999), weight_decay=opt.weight_decay)