in train.py [0:0]
def create_optimizer(nets, opt):
(net_visual, net_audio) = nets
param_groups = [{'params': net_visual.parameters(), 'lr': opt.lr_visual},
{'params': net_audio.parameters(), 'lr': opt.lr_audio}]
if opt.optimizer == 'sgd':
return torch.optim.SGD(param_groups, momentum=opt.beta1, weight_decay=opt.weight_decay)
elif opt.optimizer == 'adam':
return torch.optim.Adam(param_groups, betas=(opt.beta1,0.999), weight_decay=opt.weight_decay)