in data_loaders.py [0:0]
def collate(self, batch):
data = {}
data['names'] = [item['names'] for item in batch]
data['class'] = [item['class'] for item in batch]
data['samples'] = torch.cat([item['samples'].unsqueeze(0) for item in batch])
data['sim_touch'] = torch.cat([item['sim_touch'].unsqueeze(0) for item in batch])
data['empty'] = torch.cat([item['empty'].unsqueeze(0) for item in batch])
data['depth'] = torch.cat([item['depth'].unsqueeze(0) for item in batch])
data['ref'] = {}
data['ref']['rot'] = torch.cat([item['rot'].unsqueeze(0) for item in batch])
data['ref']['rot_M'] = torch.cat([item['rot_M'].unsqueeze(0) for item in batch])
data['ref']['pos'] = torch.cat([item['pos'].unsqueeze(0) for item in batch])
data['good_touch'] = [item['good_touch'] for item in batch]
data['save_dir'] = [item['save_dir'] for item in batch]
data['num_samples'] = [item['num_samples'] for item in batch]
return data