complex_shift_autoencoder.py [270:280]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def compute_test_loss(self, loss_func, data_loader):
        """Computes RMSE based on given loss function."""
        self.encoder.eval()
        self.decoder.eval()
        losses = []
        N = 0
        with torch.no_grad():
            for i, (x1, x2, angles) in enumerate(data_loader):
                x1 = x1.to(device=self.device)
                x2 = x2.to(device=self.device)
                bs = x1.size(0)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



weakly_complex_shift_autoencoder.py [337:347]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def compute_test_loss(self, loss_func, data_loader):
        """Computes RMSE based on given loss function."""
        self.encoder.eval()
        self.decoder.eval()
        losses = []
        N = 0
        with torch.no_grad():
            for i, (x1, x2, angles) in enumerate(data_loader):
                x1 = x1.to(device=self.device)
                x2 = x2.to(device=self.device)
                bs = x1.size(0)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



