in run_experiments_real.py [0:0]
def init_argparse() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
usage="python run_experiments --cluster",
description="runs experiments with specified parameters",
)
parser.add_argument("name", help="name of experiment")
parser.add_argument(
"--model",
help="model for experiments. Example: autoencoder, cci_vae",
default="autoencoder",
)
parser.add_argument(
"--architecture", help="name of autoencoder architecture", default="Linear",
)
parser.add_argument(
"--data",
help="dataset used for training: mnist, single_digit_mnist",
default="shapes",
)
parser.add_argument(
"--mnist_proportion",
help="proportion of mnist to use",
default=0.01,
type=float,
)
parser.add_argument(
"--n_classes",
help="number of classes to use for simple shapes",
default=300,
type=int,
)
parser.add_argument(
"--z_dim", help="dataset used for training", default=1000, type=int
)
parser.add_argument(
"--transformation",
choices=["rotation", "shift_x", "shift_y"],
type=str.lower,
default="rotation",
)
parser.add_argument(
"--distribution",
help="likelihood distribution used for computing loss in CCI VAE",
choices=["gaussian", "bernoulli"],
type=str.lower,
default="gaussian",
)
parser.add_argument("--beta", help="beta used for CCI VAE", default=1000, type=int)
parser.add_argument(
"--no_latent_op",
help="use standard autoencoder without latent operators",
action="store_true",
)
parser.add_argument("--cluster", action="store_true")
parser.add_argument("--sweep", action="store_true")
return parser