facebookresearch / AttentiveNAS
File Size

The distribution of size of files (measured in lines of code).

Intro
  • File size measurements show the distribution of size of files.
  • Files are classified in four categories based on their size (lines of code): 1-100 (very small files), 101-200 (small files), 201-500 (medium size files), 501-1000 (long files), 1001+(very long files).
  • It is a good practice to keep files small. Long files may become "bloaters", code that have increased to such gargantuan proportions that they are hard to work with.
Learn more...
File Size Overall
  • There are 31 files with 3,158 lines of code.
    • 0 very long files (0 lines of code)
    • 0 long files (0 lines of code)
    • 5 medium size files (1,437 lines of codeclsfd_ftr_w_mp_ins)
    • 5 small files (661 lines of code)
    • 21 very small files (1,060 lines of code)
0% | 0% | 45% | 20% | 33%
Legend:
1001+
501-1000
201-500
101-200
1-100


explore: zoomable circles | sunburst | 3D view
File Size per Extension
1001+
501-1000
201-500
101-200
1-100
py0% | 0% | 49% | 14% | 36%
yml0% | 0% | 0% | 100% | 0%
File Size per Logical Decomposition
primary
1001+
501-1000
201-500
101-200
1-100
models/modules0% | 0% | 57% | 32% | 10%
models0% | 0% | 77% | 0% | 22%
data0% | 0% | 65% | 0% | 34%
ROOT0% | 0% | 100% | 0% | 0%
configs0% | 0% | 0% | 100% | 0%
solver0% | 0% | 0% | 56% | 43%
utils0% | 0% | 0% | 0% | 100%
evaluate0% | 0% | 0% | 0% | 100%
sampler0% | 0% | 0% | 0% | 100%
Longest Files (Top 31)
File# lines# units
attentive_nas_dynamic_model.py
in models
361 21
static_layers.py
in models/modules
282 33
auto_augment_tf.py
in data
275 38
train_attentive_nas.py
in root
268 5
dynamic_layers.py
in models/modules
251 25
dynamic_ops.py
in models/modules
184 13
eval_attentive_nas_models.yml
in configs
134 -
nn_base.py
in models/modules
116 15
train_attentive_nas_models.yml
in configs
116 -
lr_scheduler.py
in solver
111 13
data_transform.py
in data
89 4
attentive_nas_sampler.py
in sampler
86 8
config.py
in utils
83 8
build.py
in solver
83 2
attentive_nas_eval.py
in evaluate
82 1
flops_counter.py
in utils
72 4
attentive_nas_static_model.py
in models
69 7
nn_utils.py
in models/modules
69 8
imagenet_eval.py
in evaluate
66 2
saver.py
in utils
58 5
data_loader.py
in data
54 2
comm.py
in utils
50 7
progress.py
in utils
49 8
loss_ops.py
in utils
45 4
logging.py
in utils
37 3
model_factory.py
in models
35 1
activations.py
in models/modules
29 7
__init__.py
in models
1 -
__init__.py
in models/modules
1 -
__init__.py
in solver
1 -
__init__.py
in data
1 -
Files With Most Units (Top 20)
File# lines# units
auto_augment_tf.py
in data
275 38
static_layers.py
in models/modules
282 33
dynamic_layers.py
in models/modules
251 25
attentive_nas_dynamic_model.py
in models
361 21
nn_base.py
in models/modules
116 15
dynamic_ops.py
in models/modules
184 13
lr_scheduler.py
in solver
111 13
config.py
in utils
83 8
progress.py
in utils
49 8
nn_utils.py
in models/modules
69 8
attentive_nas_sampler.py
in sampler
86 8
comm.py
in utils
50 7
attentive_nas_static_model.py
in models
69 7
activations.py
in models/modules
29 7
train_attentive_nas.py
in root
268 5
saver.py
in utils
58 5
loss_ops.py
in utils
45 4
flops_counter.py
in utils
72 4
data_transform.py
in data
89 4
logging.py
in utils
37 3
Files With Long Lines (Top 6)

There are 6 files with lines longer than 120 characters. In total, there are 10 long lines.

File# lines# units# long lines
attentive_nas_dynamic_model.py
in models
361 21 3
dynamic_layers.py
in models/modules
251 25 3
attentive_nas_static_model.py
in models
69 7 1
static_layers.py
in models/modules
282 33 1
lr_scheduler.py
in solver
111 13 1
attentive_nas_sampler.py
in sampler
86 8 1