in models/modules/static_layers.py [0:0]
def __init__(self, in_channels, out_channels,
kernel_size=3, stride=1, expand_ratio=6, mid_channels=None, act_func='relu6', use_se=False, channels_per_group=1):
super(MBInvertedConvLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.expand_ratio = expand_ratio
self.mid_channels = mid_channels
self.act_func = act_func
self.use_se = use_se
self.channels_per_group = channels_per_group
if self.mid_channels is None:
feature_dim = round(self.in_channels * self.expand_ratio)
else:
feature_dim = self.mid_channels
if self.expand_ratio == 1:
self.inverted_bottleneck = None
else:
self.inverted_bottleneck = nn.Sequential(OrderedDict([
('conv', nn.Conv2d(self.in_channels, feature_dim, 1, 1, 0, bias=False)),
('bn', nn.BatchNorm2d(feature_dim)),
('act', build_activation(self.act_func, inplace=True)),
]))
assert feature_dim % self.channels_per_group == 0
active_groups = feature_dim // self.channels_per_group
pad = get_same_padding(self.kernel_size)
depth_conv_modules = [
('conv', nn.Conv2d(feature_dim, feature_dim, kernel_size, stride, pad, groups=active_groups, bias=False)),
('bn', nn.BatchNorm2d(feature_dim)),
('act', build_activation(self.act_func, inplace=True))
]
if self.use_se:
depth_conv_modules.append(('se', SELayer(feature_dim)))
self.depth_conv = nn.Sequential(OrderedDict(depth_conv_modules))
self.point_linear = nn.Sequential(OrderedDict([
('conv', nn.Conv2d(feature_dim, out_channels, 1, 1, 0, bias=False)),
('bn', nn.BatchNorm2d(out_channels)),
]))