in data/auto_augment_tf.py [0:0]
def __init__(self, name, prob, magnitude, hparams={}):
self.aug_fn = NAME_TO_OP[name]
# self.level_fn = level_to_arg(hparams)[name]
if name == 'AutoContrast' or name == 'Equalize' or name == 'Invert':
self.level_fn = pass_fn
elif name == 'Rotate':
self.level_fn = _rotate_level_to_arg
elif name == 'Posterize':
self.level_fn = _conversion0
elif name == 'Posterize2':
self.level_fn = _conversion1
elif name == 'Solarize':
self.level_fn = _conversion2
elif name == 'SolarizeAdd':
self.level_fn = _conversion3
elif name == 'Color' or name == 'Contrast' or name == 'Brightness' or name == 'Sharpness':
self.level_fn = _enhance_level_to_arg
elif name == 'ShearX' or name == 'ShearY':
self.level_fn = _shear_level_to_arg
elif name == 'TranslateX' or name == 'TranslateY':
self.level_fn = _translate_abs_level_to_arg2
elif name == 'TranslateXRel' or name == 'TranslateYRel':
self.level_fn = _translate_rel_level_to_arg
else:
print("{} not recognized".format({}))
self.prob = prob
self.magnitude = magnitude
# If std deviation of magnitude is > 0, we introduce some randomness
# in the usually fixed policy and sample magnitude from normal dist
# with mean magnitude and std-dev of magnitude_std.
# NOTE This is being tested as it's not in paper or reference impl.
self.magnitude_std = 0.5 # FIXME add arg/hparam
self.kwargs = {
'fillcolor': hparams['img_mean'] if 'img_mean' in hparams else _FILL,
'resample': hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION
}