augly/audio/utils.py [185:209]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            )
    return new_src_segments, new_dst_segments


def compute_segments(
    name: str,
    src_duration: float,
    dst_duration: float,
    metadata: List[Dict[str, Any]],
    **kwargs,
) -> Tuple[List[Segment], List[Segment]]:
    speed_factor = 1.0
    if not metadata:
        src_segments = [Segment(0.0, src_duration)]
        dst_segments = [Segment(0.0, src_duration)]
    else:
        src_segments = [
            Segment(segment_dict["start"], segment_dict["end"])
            for segment_dict in metadata[-1]["src_segments"]
        ]
        dst_segments = [
            Segment(segment_dict["start"], segment_dict["end"])
            for segment_dict in metadata[-1]["dst_segments"]
        ]
        for meta in metadata:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



augly/video/helpers/metadata.py [254:282]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            )
    return new_src_segments, new_dst_segments


def compute_segments(
    name: str,
    src_duration: float,
    dst_duration: float,
    metadata: List[Dict[str, Any]],
    **kwargs,
) -> Tuple[List[Segment], List[Segment]]:
    """
    Compute matching pairs of src_segment -> dst_segment, given the kwargs of the
    transform, as well as the metadata about previously applied transforms.
    """
    speed_factor = 1.0
    if not metadata:
        src_segments = [Segment(0.0, src_duration)]
        dst_segments = [Segment(0.0, src_duration)]
    else:
        src_segments = [
            Segment(segment_dict["start"], segment_dict["end"])
            for segment_dict in metadata[-1]["src_segments"]
        ]
        dst_segments = [
            Segment(segment_dict["start"], segment_dict["end"])
            for segment_dict in metadata[-1]["dst_segments"]
        ]
        for meta in metadata:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



