def __init__()

in src/models.py [0:0]


    def __init__(self,
                 view_dim=7,
                 warpnet_layers=4,
                 warpnet_channels=64,
                 wavenet_blocks=3,
                 layers_per_block=10,
                 wavenet_channels=64,
                 model_name='binaural_network',
                 use_cuda=True):
        super().__init__(model_name, use_cuda)
        self.warper = Warpnet(warpnet_layers, warpnet_channels)
        self.input = nn.Conv1d(2, wavenet_channels, kernel_size=1)
        self.input.weight.data.uniform_(-np.sqrt(6.0 / 2), np.sqrt(6.0 / 2))
        self.hyperconv_wavenet = HyperConvWavenet(view_dim, wavenet_channels, wavenet_blocks, layers_per_block)
        self.output_net = nn.ModuleList([WaveoutBlock(wavenet_channels)
                                        for _ in range(wavenet_blocks*layers_per_block)])
        if self.use_cuda:
            self.cuda()