in src/models.py [0:0]
def __init__(self,
view_dim=7,
warpnet_layers=4,
warpnet_channels=64,
wavenet_blocks=3,
layers_per_block=10,
wavenet_channels=64,
model_name='binaural_network',
use_cuda=True):
super().__init__(model_name, use_cuda)
self.warper = Warpnet(warpnet_layers, warpnet_channels)
self.input = nn.Conv1d(2, wavenet_channels, kernel_size=1)
self.input.weight.data.uniform_(-np.sqrt(6.0 / 2), np.sqrt(6.0 / 2))
self.hyperconv_wavenet = HyperConvWavenet(view_dim, wavenet_channels, wavenet_blocks, layers_per_block)
self.output_net = nn.ModuleList([WaveoutBlock(wavenet_channels)
for _ in range(wavenet_blocks*layers_per_block)])
if self.use_cuda:
self.cuda()