Experiments/Visualizers.py [63:84]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
		image = np.flipud(self.environment.sim.render(600, 600, camera_name='vizview1'))
		return image

	def visualize_joint_trajectory(self, trajectory, return_gif=False, gif_path=None, gif_name="Traj.gif", segmentations=None, return_and_save=False, additional_info=None):

		image_list = []
		for t in range(trajectory.shape[0]):
			new_image = self.set_joint_pose_return_image(trajectory[t])
			image_list.append(new_image)

			# Insert white 
			if segmentations is not None:
				if t>0 and segmentations[t]==1:
					image_list.append(255*np.ones_like(new_image)+new_image)

		if return_and_save:
			imageio.mimsave(os.path.join(gif_path,gif_name), image_list)
			return image_list
		elif return_gif:
			return image_list
		else:
			imageio.mimsave(os.path.join(gif_path,gif_name), image_list)            
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



Experiments/Visualizers.py [180:201]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
		image = np.flipud(self.environment.sim.render(600, 600, camera_name='vizview1'))
		return image

	def visualize_joint_trajectory(self, trajectory, return_gif=False, gif_path=None, gif_name="Traj.gif", segmentations=None, return_and_save=False, additional_info=None):

		image_list = []
		for t in range(trajectory.shape[0]):
			new_image = self.set_joint_pose_return_image(trajectory[t])
			image_list.append(new_image)

			# Insert white 
			if segmentations is not None:
				if t>0 and segmentations[t]==1:
					image_list.append(255*np.ones_like(new_image)+new_image)

		if return_and_save:
			imageio.mimsave(os.path.join(gif_path,gif_name), image_list)
			return image_list
		elif return_gif:
			return image_list
		else:
			imageio.mimsave(os.path.join(gif_path,gif_name), image_list)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



