in Experiments/PolicyManagers.py [0:0]
def evaluate(self, model):
self.set_epoch(0)
if model:
self.load_all_models(model)
np.set_printoptions(suppress=True,precision=2)
print("Running Evaluation of State Distances on small test set.")
self.evaluate_metrics()
# Visualize space if the subpolicy has been trained...
if (self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap') and (self.args.fix_subpolicy==0):
print("Running Visualization on Robot Data.")
self.pretrain_policy_manager = PolicyManager_Pretrain(self.args.number_policies, self.dataset, self.args)
self.pretrain_policy_manager.setup()
self.pretrain_policy_manager.load_all_models(model, only_policy=True)
self.pretrain_policy_manager.visualize_robot_data()
if self.args.subpolicy_model:
print("Loading encoder.")
self.setup_eval_against_encoder()
# Evaluate NLL and (potentially Expected Value Difference) on Validation / Test Datasets.
self.epsilon = 0.
# np.set_printoptions(suppress=True,precision=2)
# for i in range(60):
# self.run_iteration(0, i)
if self.args.debug:
embed()