def run()

in Experiments/Master.py [0:0]


	def run(self):
		if self.args.setting=='pretrain_sub' or self.args.setting=='pretrain_prior' or \
			self.args.setting=='imitation' or self.args.setting=='baselineRL' or self.args.setting=='downstreamRL' or \
			 self.args.setting=='transfer' or self.args.setting=='cycle_transfer':
			if self.args.train:
				if self.args.model:
					self.policy_manager.train(self.args.model)
				else:
					self.policy_manager.train()
			else:
				if self.args.setting=='pretrain_prior':
					self.policy_manager.train(self.args.model)
				else:
					self.policy_manager.evaluate(model=self.args.model)		
				
		elif self.args.setting=='learntsub':
			if self.args.train:
				if self.args.model:
					self.policy_manager.train(self.args.model)
				else:
					if self.args.subpolicy_model:
						print("Just loading subpolicies.")
						self.policy_manager.load_all_models(self.args.subpolicy_model, just_subpolicy=True)
					self.policy_manager.train()
			else:
				# self.policy_manager.train(self.args.model)
				self.policy_manager.evaluate(self.args.model)

		# elif self.args.setting=='baselineRL' or self.args.setting=='downstreamRL':
		# 	if self.args.train:
		# 		if self.args.model:
		# 			self.policy_manager.train(self.args.model)
		# 		else:
		# 			self.policy_manager.train()

		elif self.args.setting=='DMP':
			self.policy_manager.evaluate_across_testset()