in Experiments/Master.py [0:0]
def run(self):
if self.args.setting=='pretrain_sub' or self.args.setting=='pretrain_prior' or \
self.args.setting=='imitation' or self.args.setting=='baselineRL' or self.args.setting=='downstreamRL' or \
self.args.setting=='transfer' or self.args.setting=='cycle_transfer':
if self.args.train:
if self.args.model:
self.policy_manager.train(self.args.model)
else:
self.policy_manager.train()
else:
if self.args.setting=='pretrain_prior':
self.policy_manager.train(self.args.model)
else:
self.policy_manager.evaluate(model=self.args.model)
elif self.args.setting=='learntsub':
if self.args.train:
if self.args.model:
self.policy_manager.train(self.args.model)
else:
if self.args.subpolicy_model:
print("Just loading subpolicies.")
self.policy_manager.load_all_models(self.args.subpolicy_model, just_subpolicy=True)
self.policy_manager.train()
else:
# self.policy_manager.train(self.args.model)
self.policy_manager.evaluate(self.args.model)
# elif self.args.setting=='baselineRL' or self.args.setting=='downstreamRL':
# if self.args.train:
# if self.args.model:
# self.policy_manager.train(self.args.model)
# else:
# self.policy_manager.train()
elif self.args.setting=='DMP':
self.policy_manager.evaluate_across_testset()