CodeXGLUE/Code-Code/Clone-detection-BigCloneBench/code/run.py [532:587]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    args = parser.parse_args()

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu
    args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu
    # Setup logging
    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args.seed)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    args.start_epoch = 0
    args.start_step = 0
    checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
    if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
        args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
        args.config_name = os.path.join(checkpoint_last, 'config.json')
        idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
        with open(idx_file, encoding='utf-8') as idxf:
            args.start_epoch = int(idxf.readlines()[0].strip()) + 1

        step_file = os.path.join(checkpoint_last, 'step_file.txt')
        if os.path.exists(step_file):
            with open(step_file, encoding='utf-8') as stepf:
                args.start_step = int(stepf.readlines()[0].strip())

        logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



CodeXGLUE/Text-Code/NL-code-search-Adv/code/run.py [511:569]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    args = parser.parse_args()


    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu
    args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu
    # Setup logging
    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)


    # Set seed
    set_seed(args.seed)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    args.start_epoch = 0
    args.start_step = 0
    checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
    if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
        args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
        args.config_name = os.path.join(checkpoint_last, 'config.json')
        idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
        with open(idx_file, encoding='utf-8') as idxf:
            args.start_epoch = int(idxf.readlines()[0].strip()) + 1

        step_file = os.path.join(checkpoint_last, 'step_file.txt')
        if os.path.exists(step_file):
            with open(step_file, encoding='utf-8') as stepf:
                args.start_step = int(stepf.readlines()[0].strip())

        logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))

    
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



