in codegen_sources/model/src/model/__init__.py [0:0]
def build_model(params, dico, gpu=True):
"""
Build model.
"""
if params.encoder_only:
# build
model = TransformerModel(params, dico, is_encoder=True, with_output=True)
# reload pretrained word embeddings
if params.reload_emb != "":
word2id, embeddings = load_embeddings(params.reload_emb, params)
set_pretrain_emb(model, dico, word2id, embeddings, gpu)
# reload a pretrained model
if params.reload_model != "":
logger.info("============ Model Reloading")
logger.info("Reloading model from %s ..." % params.reload_model)
reload_transformer(params, params.reload_model, dico, model, "model", gpu)
logger.info("Model: {}".format(model))
logger.info(
"Number of parameters (model): %i"
% sum([p.numel() for p in model.parameters() if p.requires_grad])
)
logger.info("")
return [model.cuda() if gpu else model]
else:
# build
# TODO: only output when necessary - len(params.clm_steps + params.mlm_steps) > 0
encoder = TransformerModel(params, dico, is_encoder=True, with_output=True)
if params.separate_decoders:
decoders = [
TransformerModel(params, dico, is_encoder=False, with_output=True)
for _ in params.lang2id.values()
]
else:
decoders = [
TransformerModel(params, dico, is_encoder=False, with_output=True)
]
for layer in range(params.n_layers_decoder):
if layer <= params.n_share_dec - 1:
assert params.amp == -1, "sharing layers is not supported with AMP"
logger.info("Sharing decoder attention parameters for layer %i" % layer)
for i in range(1, len(decoders)):
decoders[i].attentions[layer] = decoders[0].attentions[layer]
# reload pretrained word embeddings
if params.reload_emb != "":
word2id, embeddings = load_embeddings(params.reload_emb, params)
set_pretrain_emb(encoder, dico, word2id, embeddings, gpu)
for decoder in decoders:
set_pretrain_emb(decoder, dico, word2id, embeddings, gpu)
# reload a pretrained model
if params.reload_model != "":
logger.info("============ Model Reloading")
enc_path, dec_path = params.reload_model.split(",")
assert not (enc_path == "" and dec_path == "")
# reload encoder
if enc_path != "":
logger.info("Reloading encoder from %s ..." % enc_path)
reload_transformer(params, enc_path, dico, encoder, "encoder", gpu)
# reload decoders
if dec_path != "":
for dec in decoders:
logger.info("Reloading decoders from %s ..." % dec_path)
if params.reload_encoder_for_decoder:
reload_transformer(params, dec_path, dico, dec, "encoder", gpu)
else:
reload_transformer(params, dec_path, dico, dec, "decoder", gpu)
logger.debug("Encoder: {}".format(encoder))
logger.debug("Decoder: {}".format(decoders))
logger.info(
"Number of parameters (encoder): %i"
% sum([p.numel() for p in encoder.parameters() if p.requires_grad])
)
logger.info(
"Number of parameters (decoders): %i"
% sum([p.numel() for p in decoders[0].parameters() if p.requires_grad])
)
logger.info(f"Number of decoders: {len(decoders)}")
logger.info("")
return (
[encoder.cuda() if gpu else encoder],
[dec.cuda() if gpu else dec for dec in decoders],
)