in contactopt/loader.py [0:0]
def __getitem__(self, idx):
sample = self.dataset[idx]
out = dict()
out['obj_faces'] = torch.Tensor(sample['ho_gt'].obj_faces)
out['obj_sampled_idx'] = torch.Tensor(sample['obj_sampled_idx']).long()
out['obj_verts_gt'] = torch.Tensor(sample['ho_gt'].obj_verts)
out['obj_sampled_verts_gt'] = out['obj_verts_gt'][out['obj_sampled_idx'], :]
out['obj_contact_gt'] = torch.Tensor(sample['ho_gt'].obj_contact)
out['hand_contact_gt'] = torch.Tensor(sample['ho_gt'].hand_contact)
out['hand_pose_gt'] = torch.Tensor(sample['ho_gt'].hand_pose)
out['hand_beta_gt'] = torch.Tensor(sample['ho_gt'].hand_beta)
out['hand_mTc_gt'] = torch.Tensor(sample['ho_gt'].hand_mTc)
out['hand_verts_gt'] = torch.Tensor(sample['ho_gt'].hand_verts)
out['obj_verts_aug'] = torch.Tensor(sample['ho_aug'].obj_verts)
out['obj_sampled_verts_aug'] = out['obj_verts_aug'][out['obj_sampled_idx'], :]
out['hand_pose_aug'] = torch.Tensor(sample['ho_aug'].hand_pose)
out['hand_beta_aug'] = torch.Tensor(sample['ho_aug'].hand_beta)
out['hand_mTc_aug'] = torch.Tensor(sample['ho_aug'].hand_mTc)
out['hand_verts_aug'] = torch.Tensor(sample['ho_aug'].hand_verts)
out['hand_feats_aug'] = torch.Tensor(sample['hand_feats_aug'])
out['obj_feats_aug'] = torch.Tensor(sample['obj_feats_aug'])
out['obj_normals_aug'] = torch.Tensor(sample['ho_aug'].obj_normals)
if self.train:
out['obj_sampled_verts_aug'] += torch.randn(out['obj_sampled_verts_aug'].shape) * self.aug_vert_jitter
return out