def __init__()

in isoexp/linear/linearmab_models.py [0:0]


    def __init__(self, random_state=0, noise=0., n_actions=4, n_features=4, reward_lim=(-np.inf, np.inf)):
        features = np.random.randn(n_actions, n_features)
        real_theta = np.random.randn(n_features) * 0.5

        means = np.dot(features, real_theta)
        idxs = (means < reward_lim[0]) | (means > reward_lim[1])
        idxs = np.arange(n_actions)[idxs]
        for i in idxs:
            mean = -np.inf
            feat = None
            while mean > reward_lim[1] or mean < reward_lim[0]:
                feat = np.random.randn(1, n_features)
                mean = np.dot(feat, real_theta)
            features[i, :] = feat

        super(RandomNormalLinearArms, self).__init__(random_state=random_state, noise=noise,
                                                     features=features, theta=real_theta)