in isoexp/devfair_reward_attack.py [0:0]
def run_and_output(dataset=None):
results = []
if PARALLEL:
import multiprocessing
num_cores = multiprocessing.cpu_count()
results = Parallel(n_jobs=num_cores, verbose=1)(
delayed(work)(m=m, nb_arms=K, nb_features=n_features, noise=a_noise,
nb_simu=nb_simu, T=T, all_algs=algorithms,
random_state=random_state + m, M=M, which=dataset) for m in range(nb_models))
else:
for m in tqdm(range(nb_models)):
ret = work(m, K, n_features, a_noise, nb_simu, T, algorithms, random_state + m, M=M)
results.append(ret)
id = '{:%Y%m%d_%H%M%S}'.format(datetime.datetime.now())
pickle_name = "{}_{}_{}_contextual_attacks_rewards.pickle".format(dataset, id, "PAR" if PARALLEL else "SEQ")
print(pickle_name)
with open(pickle_name, "wb") as f:
pickle.dump(results, f)
with open("{}_{}_{}_contextual_attacks_rewards_settings.json".format(dataset, id, "PAR" if PARALLEL else "SEQ"), "w+") as f:
json.dump(settings, f)
return results, pickle_name, id,