def parse_predictions()

in downstream/votenet/models/ap_helper.py [0:0]


def parse_predictions(end_points, config_dict):
    """ Parse predictions to OBB parameters and suppress overlapping boxes
    
    Args:
        end_points: dict
            {point_clouds, center, heading_scores, heading_residuals,
            size_scores, size_residuals, sem_cls_scores}
        config_dict: dict
            {dataset_config, remove_empty_box, use_3d_nms, nms_iou,
            use_old_type_nms, conf_thresh, per_class_proposal}

    Returns:
        batch_pred_map_cls: a list of len == batch size (BS)
            [pred_list_i], i = 0, 1, ..., BS-1
            where pred_list_i = [(pred_sem_cls, box_params, box_score)_j]
            where j = 0, ..., num of valid detections - 1 from sample input i
    """
    pred_center = end_points['center'] # B,num_proposal,3
    pred_heading_class = torch.argmax(end_points['heading_scores'], -1) # B,num_proposal
    pred_heading_residual = torch.gather(end_points['heading_residuals'], 2,
        pred_heading_class.unsqueeze(-1)) # B,num_proposal,1
    pred_heading_residual.squeeze_(2)
    pred_size_class = torch.argmax(end_points['size_scores'], -1) # B,num_proposal
    pred_size_residual = torch.gather(end_points['size_residuals'], 2,
        pred_size_class.unsqueeze(-1).unsqueeze(-1).repeat(1,1,1,3)) # B,num_proposal,1,3
    pred_size_residual.squeeze_(2)
    pred_sem_cls = torch.argmax(end_points['sem_cls_scores'], -1) # B,num_proposal
    sem_cls_probs = softmax(end_points['sem_cls_scores'].detach().cpu().numpy()) # B,num_proposal,10
    pred_sem_cls_prob = np.max(sem_cls_probs,-1) # B,num_proposal

    num_proposal = pred_center.shape[1] 
    # Since we operate in upright_depth coord for points, while util functions
    # assume upright_camera coord.
    bsize = pred_center.shape[0]
    pred_corners_3d_upright_camera = np.zeros((bsize, num_proposal, 8, 3))
    pred_center_upright_camera = flip_axis_to_camera(pred_center.detach().cpu().numpy())
    for i in range(bsize):
        for j in range(num_proposal):
            heading_angle = config_dict['dataset_config'].class2angle(\
                pred_heading_class[i,j].detach().cpu().numpy(), pred_heading_residual[i,j].detach().cpu().numpy())
            box_size = config_dict['dataset_config'].class2size(\
                int(pred_size_class[i,j].detach().cpu().numpy()), pred_size_residual[i,j].detach().cpu().numpy())
            corners_3d_upright_camera = get_3d_box(box_size, heading_angle, pred_center_upright_camera[i,j,:])
            pred_corners_3d_upright_camera[i,j] = corners_3d_upright_camera

    K = pred_center.shape[1] # K==num_proposal
    nonempty_box_mask = np.ones((bsize, K))

    if config_dict['remove_empty_box']:
        # -------------------------------------
        # Remove predicted boxes without any point within them..
        batch_pc = end_points['point_clouds'].cpu().numpy()[:,:,0:3] # B,N,3
        for i in range(bsize):
            pc = batch_pc[i,:,:] # (N,3)
            for j in range(K):
                box3d = pred_corners_3d_upright_camera[i,j,:,:] # (8,3)
                box3d = flip_axis_to_depth(box3d)
                pc_in_box,inds = extract_pc_in_box3d(pc, box3d)
                if len(pc_in_box) < 5:
                    nonempty_box_mask[i,j] = 0
        # -------------------------------------

    obj_logits = end_points['objectness_scores'].detach().cpu().numpy()
    obj_prob = softmax(obj_logits)[:,:,1] # (B,K)
    if not config_dict['use_3d_nms']:
        # ---------- NMS input: pred_with_prob in (B,K,7) -----------
        pred_mask = np.zeros((bsize, K))
        for i in range(bsize):
            boxes_2d_with_prob = np.zeros((K,5))
            for j in range(K):
                boxes_2d_with_prob[j,0] = np.min(pred_corners_3d_upright_camera[i,j,:,0])
                boxes_2d_with_prob[j,2] = np.max(pred_corners_3d_upright_camera[i,j,:,0])
                boxes_2d_with_prob[j,1] = np.min(pred_corners_3d_upright_camera[i,j,:,2])
                boxes_2d_with_prob[j,3] = np.max(pred_corners_3d_upright_camera[i,j,:,2])
                boxes_2d_with_prob[j,4] = obj_prob[i,j]
            nonempty_box_inds = np.where(nonempty_box_mask[i,:]==1)[0]
            pick = nms_2d_faster(boxes_2d_with_prob[nonempty_box_mask[i,:]==1,:],
                config_dict['nms_iou'], config_dict['use_old_type_nms'])
            assert(len(pick)>0)
            pred_mask[i, nonempty_box_inds[pick]] = 1
        end_points['pred_mask'] = pred_mask
        # ---------- NMS output: pred_mask in (B,K) -----------
    elif config_dict['use_3d_nms'] and (not config_dict['cls_nms']):
        # ---------- NMS input: pred_with_prob in (B,K,7) -----------
        pred_mask = np.zeros((bsize, K))
        for i in range(bsize):
            boxes_3d_with_prob = np.zeros((K,7))
            for j in range(K):
                boxes_3d_with_prob[j,0] = np.min(pred_corners_3d_upright_camera[i,j,:,0])
                boxes_3d_with_prob[j,1] = np.min(pred_corners_3d_upright_camera[i,j,:,1])
                boxes_3d_with_prob[j,2] = np.min(pred_corners_3d_upright_camera[i,j,:,2])
                boxes_3d_with_prob[j,3] = np.max(pred_corners_3d_upright_camera[i,j,:,0])
                boxes_3d_with_prob[j,4] = np.max(pred_corners_3d_upright_camera[i,j,:,1])
                boxes_3d_with_prob[j,5] = np.max(pred_corners_3d_upright_camera[i,j,:,2])
                boxes_3d_with_prob[j,6] = obj_prob[i,j]
            nonempty_box_inds = np.where(nonempty_box_mask[i,:]==1)[0]
            pick = nms_3d_faster(boxes_3d_with_prob[nonempty_box_mask[i,:]==1,:],
                config_dict['nms_iou'], config_dict['use_old_type_nms'])
            assert(len(pick)>0)
            pred_mask[i, nonempty_box_inds[pick]] = 1
        end_points['pred_mask'] = pred_mask
        # ---------- NMS output: pred_mask in (B,K) -----------
    elif config_dict['use_3d_nms'] and config_dict['cls_nms']:
        # ---------- NMS input: pred_with_prob in (B,K,8) -----------
        pred_mask = np.zeros((bsize, K))
        for i in range(bsize):
            boxes_3d_with_prob = np.zeros((K,8))
            for j in range(K):
                boxes_3d_with_prob[j,0] = np.min(pred_corners_3d_upright_camera[i,j,:,0])
                boxes_3d_with_prob[j,1] = np.min(pred_corners_3d_upright_camera[i,j,:,1])
                boxes_3d_with_prob[j,2] = np.min(pred_corners_3d_upright_camera[i,j,:,2])
                boxes_3d_with_prob[j,3] = np.max(pred_corners_3d_upright_camera[i,j,:,0])
                boxes_3d_with_prob[j,4] = np.max(pred_corners_3d_upright_camera[i,j,:,1])
                boxes_3d_with_prob[j,5] = np.max(pred_corners_3d_upright_camera[i,j,:,2])
                boxes_3d_with_prob[j,6] = obj_prob[i,j]
                boxes_3d_with_prob[j,7] = pred_sem_cls[i,j] # only suppress if the two boxes are of the same class!!
            nonempty_box_inds = np.where(nonempty_box_mask[i,:]==1)[0]
            pick = nms_3d_faster_samecls(boxes_3d_with_prob[nonempty_box_mask[i,:]==1,:],
                config_dict['nms_iou'], config_dict['use_old_type_nms'])
            assert(len(pick)>0)
            pred_mask[i, nonempty_box_inds[pick]] = 1
        end_points['pred_mask'] = pred_mask
        # ---------- NMS output: pred_mask in (B,K) -----------

    batch_pred_map_cls = [] # a list (len: batch_size) of list (len: num of predictions per sample) of tuples of pred_cls, pred_box and conf (0-1)
    for i in range(bsize):
        if config_dict['per_class_proposal']:
            cur_list = []
            for ii in range(config_dict['dataset_config'].num_class):
                cur_list += [(ii, pred_corners_3d_upright_camera[i,j], sem_cls_probs[i,j,ii]*obj_prob[i,j]) \
                    for j in range(pred_center.shape[1]) if pred_mask[i,j]==1 and obj_prob[i,j]>config_dict['conf_thresh']]
            batch_pred_map_cls.append(cur_list)
        else:
            batch_pred_map_cls.append([(pred_sem_cls[i,j].item(), pred_corners_3d_upright_camera[i,j], obj_prob[i,j]) \
                for j in range(pred_center.shape[1]) if pred_mask[i,j]==1 and obj_prob[i,j]>config_dict['conf_thresh']])
    end_points['batch_pred_map_cls'] = batch_pred_map_cls

    return batch_pred_map_cls