def main()

in main.py [0:0]


def main(args):
    utils.init_distributed_mode(args)
    print(args)
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    cudnn.benchmark = True

    dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
    if args.disable_eval:
        args.dist_eval = False
        dataset_val = None
    else:
        dataset_val, _ = build_dataset(is_train=False, args=args)

    num_tasks = utils.get_world_size()
    global_rank = utils.get_rank()

    sampler_train = torch.utils.data.DistributedSampler(
        dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True, seed=args.seed,
    )
    print("Sampler_train = %s" % str(sampler_train))
    if args.dist_eval:
        if len(dataset_val) % num_tasks != 0:
            print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                    'This will slightly alter validation results as extra duplicate entries are added to achieve '
                    'equal num of samples per-process.')
        sampler_val = torch.utils.data.DistributedSampler(
            dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
    else:
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    if global_rank == 0 and args.log_dir is not None:
        os.makedirs(args.log_dir, exist_ok=True)
        log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
    else:
        log_writer = None

    if global_rank == 0:
        wandb_logger = utils.WandbLogger(args)
    else:
        wandb_logger = None

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train, sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    if dataset_val is not None:
        data_loader_val = torch.utils.data.DataLoader(
            dataset_val, sampler=sampler_val,
            batch_size=int(1.5 * args.batch_size),
            num_workers=args.num_workers,
            pin_memory=args.pin_mem,
            drop_last=False
        )
    else:
        data_loader_val = None

    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        print("Mixup is activated!")
        mixup_fn = Mixup(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.nb_classes)

    model = create_model(
        args.model, 
        pretrained=False, 
        num_classes=args.nb_classes, 
        drop_path_rate=args.drop_path,
        layer_scale_init_value=args.layer_scale_init_value,
        head_init_scale=args.head_init_scale,
        )

    if args.finetune:
        if args.finetune.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(
                args.finetune, map_location='cpu', check_hash=True)
        else:
            checkpoint = torch.load(args.finetune, map_location='cpu')

        print("Load ckpt from %s" % args.finetune)
        checkpoint_model = None
        for model_key in args.model_key.split('|'):
            if model_key in checkpoint:
                checkpoint_model = checkpoint[model_key]
                print("Load state_dict by model_key = %s" % model_key)
                break
        if checkpoint_model is None:
            checkpoint_model = checkpoint
        state_dict = model.state_dict()
        for k in ['head.weight', 'head.bias']:
            if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]
        utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix)
    model.to(device)

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else '',
            resume='')
        print("Using EMA with decay = %.8f" % args.model_ema_decay)

    model_without_ddp = model
    n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)

    print("Model = %s" % str(model_without_ddp))
    print('number of params:', n_parameters)

    total_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
    num_training_steps_per_epoch = len(dataset_train) // total_batch_size
    print("LR = %.8f" % args.lr)
    print("Batch size = %d" % total_batch_size)
    print("Update frequent = %d" % args.update_freq)
    print("Number of training examples = %d" % len(dataset_train))
    print("Number of training training per epoch = %d" % num_training_steps_per_epoch)

    if args.layer_decay < 1.0 or args.layer_decay > 1.0:
        num_layers = 12 # convnext layers divided into 12 parts, each with a different decayed lr value.
        assert args.model in ['convnext_small', 'convnext_base', 'convnext_large', 'convnext_xlarge'], \
             "Layer Decay impl only supports convnext_small/base/large/xlarge"
        assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)))
    else:
        assigner = None

    if assigner is not None:
        print("Assigned values = %s" % str(assigner.values))

    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
        model_without_ddp = model.module

    optimizer = create_optimizer(
        args, model_without_ddp, skip_list=None,
        get_num_layer=assigner.get_layer_id if assigner is not None else None, 
        get_layer_scale=assigner.get_scale if assigner is not None else None)

    loss_scaler = NativeScaler() # if args.use_amp is False, this won't be used

    print("Use Cosine LR scheduler")
    lr_schedule_values = utils.cosine_scheduler(
        args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
        warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
    )

    if args.weight_decay_end is None:
        args.weight_decay_end = args.weight_decay
    wd_schedule_values = utils.cosine_scheduler(
        args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
    print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))

    if mixup_fn is not None:
        # smoothing is handled with mixup label transform
        criterion = SoftTargetCrossEntropy()
    elif args.smoothing > 0.:
        criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        criterion = torch.nn.CrossEntropyLoss()

    print("criterion = %s" % str(criterion))

    utils.auto_load_model(
        args=args, model=model, model_without_ddp=model_without_ddp,
        optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema)

    if args.eval:
        print(f"Eval only mode")
        test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)
        print(f"Accuracy of the network on {len(dataset_val)} test images: {test_stats['acc1']:.5f}%")
        return

    max_accuracy = 0.0
    if args.model_ema and args.model_ema_eval:
        max_accuracy_ema = 0.0

    print("Start training for %d epochs" % args.epochs)
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)
        if log_writer is not None:
            log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
        if wandb_logger:
            wandb_logger.set_steps()
        train_stats = train_one_epoch(
            model, criterion, data_loader_train, optimizer,
            device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn,
            log_writer=log_writer, wandb_logger=wandb_logger, start_steps=epoch * num_training_steps_per_epoch,
            lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values,
            num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq,
            use_amp=args.use_amp
        )
        if args.output_dir and args.save_ckpt:
            if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
                utils.save_model(
                    args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                    loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema)
        if data_loader_val is not None:
            test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)
            print(f"Accuracy of the model on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
            if max_accuracy < test_stats["acc1"]:
                max_accuracy = test_stats["acc1"]
                if args.output_dir and args.save_ckpt:
                    utils.save_model(
                        args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                        loss_scaler=loss_scaler, epoch="best", model_ema=model_ema)
            print(f'Max accuracy: {max_accuracy:.2f}%')

            if log_writer is not None:
                log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch)
                log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch)
                log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch)

            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         **{f'test_{k}': v for k, v in test_stats.items()},
                         'epoch': epoch,
                         'n_parameters': n_parameters}

            # repeat testing routines for EMA, if ema eval is turned on
            if args.model_ema and args.model_ema_eval:
                test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, use_amp=args.use_amp)
                print(f"Accuracy of the model EMA on {len(dataset_val)} test images: {test_stats_ema['acc1']:.1f}%")
                if max_accuracy_ema < test_stats_ema["acc1"]:
                    max_accuracy_ema = test_stats_ema["acc1"]
                    if args.output_dir and args.save_ckpt:
                        utils.save_model(
                            args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                            loss_scaler=loss_scaler, epoch="best-ema", model_ema=model_ema)
                    print(f'Max EMA accuracy: {max_accuracy_ema:.2f}%')
                if log_writer is not None:
                    log_writer.update(test_acc1_ema=test_stats_ema['acc1'], head="perf", step=epoch)
                log_stats.update({**{f'test_{k}_ema': v for k, v in test_stats_ema.items()}})
        else:
            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         'epoch': epoch,
                         'n_parameters': n_parameters}

        if args.output_dir and utils.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")

        if wandb_logger:
            wandb_logger.log_epoch_metrics(log_stats)

    if wandb_logger and args.wandb_ckpt and args.save_ckpt and args.output_dir:
        wandb_logger.log_checkpoints()


    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))