covidprognosis/data/chexpert.py [82:110]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        else:
            logging.warning(
                "split {} not recognized for dataset {}, "
                "not returning samples".format(split, self.__class__.__name__)
            )

        self.csv = self.preproc_csv(self.csv, self.subselect)

    @staticmethod
    def default_labels() -> List[str]:
        return [
            "No Finding",
            "Enlarged Cardiomediastinum",
            "Cardiomegaly",
            "Lung Opacity",
            "Lung Lesion",
            "Edema",
            "Consolidation",
            "Pneumonia",
            "Atelectasis",
            "Pneumothorax",
            "Pleural Effusion",
            "Pleural Other",
            "Fracture",
            "Support Devices",
        ]

    def preproc_csv(self, csv: pd.DataFrame, subselect: Optional[str]) -> pd.DataFrame:
        if csv is not None:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



covidprognosis/data/mimic_cxr.py [94:122]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        else:
            logging.warning(
                "split {} not recognized for dataset {}, "
                "not returning samples".format(split, self.__class__.__name__)
            )

        self.csv = self.preproc_csv(self.csv, self.subselect)

    @staticmethod
    def default_labels() -> List[str]:
        return [
            "No Finding",
            "Enlarged Cardiomediastinum",
            "Cardiomegaly",
            "Lung Opacity",
            "Lung Lesion",
            "Edema",
            "Consolidation",
            "Pneumonia",
            "Atelectasis",
            "Pneumothorax",
            "Pleural Effusion",
            "Pleural Other",
            "Fracture",
            "Support Devices",
        ]

    def preproc_csv(self, csv: pd.DataFrame, subselect: Optional[str]) -> pd.DataFrame:
        if csv is not None:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



