cp_examples/mip_finetune/mip_model.py [227:241]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        target = batch["labels"]
        # calculate loss
        loss_val = self.loss(output, target)
        # metrics
        result_logits = {}
        result_labels = {}
        self.log("val_metrics/loss", loss_val)
        for path in self.val_pathology_list:
            j = self.label_list.index(path)
            logits, labels = filter_nans(output[:, j], target[:, j])
            result_logits[path] = logits
            result_labels[path] = labels
        return {"logits": result_logits, "targets": result_labels}

    def validation_epoch_end(self, outputs):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



cp_examples/sip_finetune/sip_finetune.py [192:210]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        target = batch["labels"]

        # calculate loss
        loss_val = self.loss(output, target)

        # metrics
        result_logits = {}
        result_labels = {}
        self.log("val_metrics/loss", loss_val)
        for path in self.val_pathology_list:
            j = self.label_list.index(path)
            logits, labels = filter_nans(output[:, j], target[:, j])

            result_logits[path] = logits
            result_labels[path] = labels

        return {"logits": result_logits, "targets": result_labels}

    def validation_epoch_end(self, outputs):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



