in cp_examples/sip_finetune/sip_finetune.py [0:0]
def training_step(self, batch, batch_idx):
# forward pass
output = self(batch["image"])
target = batch["labels"]
# calculate loss
loss_val = self.loss(output, target)
# metrics
self.log("train_metrics/loss", loss_val)
for i, path in enumerate(self.val_pathology_list):
j = self.label_list.index(path)
logits, labels = filter_nans(output[:, j], target[:, j])
self.train_acc[i](logits, labels)
self.log(
f"train_metrics/accuracy_{path}",
self.train_acc[i],
on_step=True,
on_epoch=False,
)
return loss_val