Summary: 39 instances, 33 unique Text Count # TODO: Set these with configurable parameters 1 # FIXME: pytorch currently does not register `torch.cat` and 1 # TODO: Handle batch dimension here 1 # TODO: Implement conv2d gradient under following condition: 1 # TODO: Rename this to __copy__()? 3 # TODO: ONNX specification says the permutation should be 1 # TODO: fix replacement in global `torch` module - perhaps use __torch_function__ 1 # TODO: Implement conv1d gradient under following condition: 1 # TODO: Add support for loading from correct device (kwarg: map_location=device) 1 # TODO: Async / parallelize this 1 # TODO: Automatically register all these functions in CrypTensor? 1 # TODO: Eliminate dependency on torch internal function by implementing in util 3 # TODO: Encrypt modules before returning them 1 # TODO: Add test coverage for this code path (next 4 lines) 1 # TODO: Add validation_mode / validate_correctness 1 # TODO (brianknott): Check whether this RNG contains the full range we want. 1 # TODO: Although paramiko.SSHClient.exec_command() can accept 1 # TODO: make this optional? 1 # TODO: Eliminate copy-pasta by implementing _Conv parent class 1 # TODO: Find a better solution for padding with max_pooling 1 # TODO: Implement DP properly to make correct DP guarantees 1 # TODO: Remove explicit broadcasts to allow smaller beaver triples 1 # TODO: Support addition with different encoder scales 1 # TODO: parallelize / async this 1 # TODO: Add support for saving to correct device (kwarg: map_location=device) 1 # TODO: Rename this to __deepcopy__()? 2 # TODO: Incorporate eta_xr 1 # TODO: Implement custom DP mechanism (split noise / magnitude) 1 return attr.s # TODO: Sanitize string. 1 # TODO: Add check for whether ceil_mode would change size of output and allow ceil_mode when it wouldn't 1 # TODO: Compute size without executing computation 1 # TODO: Deal with any overwrite issues 2 # TODO: Replace this 1