flexflow/core/flexflow_cffi.py [27:2113]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
assert 'FF_HOME' in os.environ
_flexflow_cxxheader_dir= os.path.join(os.environ['FF_HOME'], 'include')
_flexflow_cheader_file = os.path.join(os.path.join(os.environ['FF_HOME'], 'python'), 'flexflow_c.h')

_flexflow_cheader = subprocess.check_output(['gcc', '-I', _flexflow_cxxheader_dir, '-E', '-P', _flexflow_cheader_file]).decode('utf-8')
ffi = cffi.FFI()
ffi.cdef(_flexflow_cheader)
ffc = ffi.dlopen(None)

ff_tracing_id = 200

warnings.simplefilter('always', DeprecationWarning)

def get_c_name(name):
  if name is None:
    return ffi.NULL
  else:
    return ffi.new("char[]", name.encode('ascii'))

def get_datatype_size(datatype):
  if (datatype == DataType.DT_FLOAT):
    return 4
  elif (datatype == DataType.DT_DOUBLE):
    return 8
  elif (datatype == DataType.DT_INT32):
    return 4
  elif (datatype == DataType.DT_INT64):
    return 8
  else:
    assert 0, "unknow datatype" + str(datatype)
    return 0

# -----------------------------------------------------------------------
# Op
# -----------------------------------------------------------------------
class Op(object):
  __slots__ = ['handle', 'idx', 'name']
  def __init__(self, handle, idx=None, name=None):
    assert ffi.typeof(handle) == ffi.typeof('flexflow_op_t'), "Op handle is wrong"
    self.handle = handle
    self.idx = idx
    self.name = name

  def get_number_parameters(self):
    return ffc.flexflow_op_get_num_parameters(self.handle)

  def get_parameter_tensor_by_id(self, id):
    handle = ffc.flexflow_op_get_parameter_by_id(self.handle, id)
    return Parameter(handle)

  def get_number_inputs(self):
    return ffc.flexflow_op_get_num_inputs(self.handle)

  def get_input_tensor_by_id(self, id):
    handle = ffc.flexflow_op_get_input_by_id(self.handle, id)
    return Tensor(handle, False)

  def get_number_outputs(self):
    return ffc.flexflow_op_get_num_outputs(self.handle)

  def get_output_tensor_by_id(self, id):
    handle = ffc.flexflow_op_get_output_by_id(self.handle, id)
    return Tensor(handle, False)

  def init(self, model):
    ffc.flexflow_op_init(self.handle, model.handle)

  def forward(self, model):
    ffc.flexflow_op_forward(self.handle, model.handle)
    #return Tensor(handle)

  def _add_to_model(self, model):
    ffc.flexflow_op_add_to_model(self.handle, model.handle)

# -----------------------------------------------------------------------
# Exp
# -----------------------------------------------------------------------
class Exp(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Exp, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Add
# -----------------------------------------------------------------------
class Add(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Add, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Subtract
# -----------------------------------------------------------------------
class Subtract(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Subtract, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Multiply
# -----------------------------------------------------------------------
class Multiply(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Multiply, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Divide
# -----------------------------------------------------------------------
class Divide(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Divide, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Conv2D
# -----------------------------------------------------------------------
class Conv2D(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Conv2D, self).__init__(handle, idx, name)

  def get_weight_tensor(self):
    return self.get_parameter_tensor_by_id(0)

  def get_bias_tensor(self):
    return self.get_parameter_tensor_by_id(1)

  def get_input_tensor(self):
    return self.get_input_tensor_by_id(0)

  def get_output_tensor(self):
    return self.get_output_tensor_by_id(0)

# -----------------------------------------------------------------------
# Pool2D
# -----------------------------------------------------------------------
class Pool2D(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Pool2D, self).__init__(handle, idx, name)

  def get_input_tensor(self):
    return self.get_input_tensor_by_id(0)

  def get_output_tensor(self):
    return self.get_output_tensor_by_id(0)

# -----------------------------------------------------------------------
# Linear
# -----------------------------------------------------------------------
class Linear(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Linear, self).__init__(handle, idx, name)

  def get_weight_tensor(self):
    return self.get_parameter_tensor_by_id(0)

  def get_bias_tensor(self):
    return self.get_parameter_tensor_by_id(1)

  def get_input_tensor(self):
    return self.get_input_tensor_by_id(0)

  def get_output_tensor(self):
    return self.get_output_tensor_by_id(0)

# -----------------------------------------------------------------------
# Flat
# -----------------------------------------------------------------------
class Flat(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Flat, self).__init__(handle, idx, name)

  def get_input_tensor(self):
    return self.get_input_tensor_by_id(0)

  def get_output_tensor(self):
    return self.get_output_tensor_by_id(0)

# -----------------------------------------------------------------------
# Softmax
# -----------------------------------------------------------------------
class Softmax(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Softmax, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Embedding
# -----------------------------------------------------------------------
class Embedding(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Embedding, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Concat
# -----------------------------------------------------------------------
class Concat(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Concat, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# BatchNorm
# -----------------------------------------------------------------------
class BatchNorm(Op):
  def __init__(self, handle, idx=None, name=None):
    super(BatchNorm, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Dropout
# -----------------------------------------------------------------------
class Dropout(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Dropout, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# ScalarMultiply
# -----------------------------------------------------------------------
class ScalarMultiply(Op):
  def __init__(self, handle, idx=None, name=None):
    super(ScalarMultiply, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# ScalarAdd
# -----------------------------------------------------------------------
class ScalarAdd(Op):
  def __init__(self, handle, idx=None, name=None):
    super(ScalarAdd, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# ScalarSub
# -----------------------------------------------------------------------
class ScalarSub(Op):
  def __init__(self, handle, idx=None, name=None):
    super(ScalarSub, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# ScalarTrueDiv
# -----------------------------------------------------------------------
class ScalarTrueDiv(Op):
  def __init__(self, handle, idx=None, name=None):
    super(ScalarTrueDiv, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Relu
# -----------------------------------------------------------------------
class Relu(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Relu, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Gelu
# -----------------------------------------------------------------------
class Gelu(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Gelu, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Sigmod
# -----------------------------------------------------------------------
class Sigmoid(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Sigmoid, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Tanh
# -----------------------------------------------------------------------
class Tanh(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Tanh, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Elu
# -----------------------------------------------------------------------
class Elu(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Elu, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Batch_Norm
# -----------------------------------------------------------------------
class Batch_Norm(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Batch_Norm, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Batch_Matmul
# -----------------------------------------------------------------------
class Batch_Matmul(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Batch_Matmul, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Split
# -----------------------------------------------------------------------
class Split(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Split, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Reshape
# -----------------------------------------------------------------------
class Reshape(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Reshape, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Identity
# -----------------------------------------------------------------------
class Identity(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Identity, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Transpose
# -----------------------------------------------------------------------
class Transpose(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Transpose, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Reverse
# -----------------------------------------------------------------------
class Reverse(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Reverse, self).__init__(handle, idx, name)
    
# -----------------------------------------------------------------------
# MultiHeadAttention
# -----------------------------------------------------------------------
class MultiHeadAttention(Op):
  def __init__(self, handle, idx=None, name=None):
    super(MultiHeadAttention, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# flexflow_op_t handle to Op
# -----------------------------------------------------------------------
def convert_op_handle_to_op(op_type, handle, idx=None, name=None):
  if op_type == OpType.CONV2D:
    return Conv2D(handle, idx, name)
  elif op_type == OpType.POOL2D:
    return Pool2D(handle, idx, name)
  elif op_type == OpType.LINEAR:
    return Linear(handle, idx, name)
  elif op_type == OpType.EMBEDDING:
    return Embedding(handle, idx, name)
  elif op_type == OpType.FLAT:
    return Flat(handle, idx, name)
  elif op_type == OpType.CONCAT:
    return Concat(handle, idx, name)
  elif op_type == OpType.SOFTMAX:
    return Softmax(handle, idx, name)
  elif op_type == OpType.EXP:
    return Exp(handle, idx, name)
  elif op_type == OpType.ADD:
    return Add(handle, idx, name)
  elif op_type == OpType.SUBTRACT:
    return Subtract(handle, idx, name)
  elif op_type == OpType.MULTIPLY:
    return Multiply(handle, idx, name)
  elif op_type == OpType.DIVIDE:
    return Divide(handle, idx, name)
  elif op_type == OpType.MSELOSS:
    return MSELoss(handle, idx, name)
  elif op_type == OpType.SCALAR_MULTIPLY:
    return ScalarMultiply(handle, idx, name)
  elif op_type == OpType.SCALAR_ADD:
      return ScalarAdd(handle, idx, name)
  elif op_type == OpType.SCALAR_SUB:
      return ScalarSub(handle, idx, name)
  elif op_type == OpType.SCALAR_FLOORDIV:
      return ScalarFloorDiv(handle, idx, name)
  elif op_type == OpType.SCALAR_TRUEDIV:
      return ScalarTrueDiv(handle, idx, name)
  elif op_type == OpType.GELU:
    return Gelu(handle, idx, name)
  elif op_type == OpType.RELU:
    return Relu(handle, idx, name)
  elif op_type == OpType.SIGMOID:
    return Sigmoid(handle, idx, name)
  elif op_type == OpType.TANH:
    return Tanh(handle, idx, name)
  elif op_type == OpType.ELU:
    return Elu(handle, idx, name)
  elif op_type == OpType.DROPOUT:
    return Dropout(handle, idx, name)
  elif op_type == OpType.BATCH_NORM:
    return Batch_Norm(handle, idx, name)
  elif op_type == OpType.BATCH_MATMUL:
    return Batch_Matmul(handle, idx, name)
  elif op_type == OpType.SPLIT:
    return Split(handle, idx, name)
  elif op_type == OpType.RESHAPE:
    return Reshape(handle, idx, name)
  elif op_type == OpType.IDENTITY:
    return Identity(handle,idx,name)
  elif op_type == OpType.TRANSPOSE:
    return Transpose(handle, idx, name)
  elif op_type == OpType.REVERSE:
    return Reverse(handle, idx, name)
  elif op_type == OpType.MULTIHEAD_ATTENTION:
    return Reverse(handle, idx, name)
  else:
    assert 0, "unknow layer type {}".format(op_type)
    return None

# -----------------------------------------------------------------------
# FFConfig
# -----------------------------------------------------------------------

class FFConfig(object):
  __slots__ = ['handle', '_handle']
  def __init__(self):
    self.handle = ffc.flexflow_config_create()
    self._handle = ffi.gc(self.handle, ffc.flexflow_config_destroy)

  def parse_args(self):
    ffc.flexflow_config_parse_args_default(self.handle)

  @property
  def batch_size(self):
    return ffc.flexflow_config_get_batch_size(self.handle)

  @property
  def workers_per_node(self):
    return ffc.flexflow_config_get_workers_per_node(self.handle)

  @property
  def num_nodes(self):
    return ffc.flexflow_config_get_num_nodes(self.handle)

  @property
  def epochs(self):
    return ffc.flexflow_config_get_epochs(self.handle)

  def get_current_time(self):
    return ffc.flexflow_get_current_time(self.handle)

  def begin_trace(self, trace_id):
    ffc.flexflow_begin_trace(self.handle, trace_id)

  def end_trace(self, trace_id):
    ffc.flexflow_end_trace(self.handle, trace_id)

# -----------------------------------------------------------------------
# Tensor
# -----------------------------------------------------------------------

class Tensor(object):
  __slots__ = ['p_handle', 'handle', '_handle', 'num_dims', 'dims', 'data_type', 'owner_op', 'mapped']
  def __init__(self, handle, deallocate=True, owner_op_type=None, p_handle=None):
    if handle == None and ffi.typeof(p_handle) == ffi.typeof('flexflow_tensor_t*'):
      self.p_handle = p_handle
      self.handle = self.p_handle[0]
    elif handle != None and ffi.typeof(handle) == ffi.typeof('flexflow_tensor_t'):
      self.p_handle = 0
      self.handle = handle
    elif handle != None and ffi.typeof(handle) == ffi.typeof('flexflow_parameter_t'):
      self.p_handle = ffi.new('flexflow_tensor_t *')
      self.p_handle.impl = handle.impl
      self.handle = self.p_handle[0]
    else:
      assert 0, "Tensor handle is wrong"
    self.num_dims = 0
    self.dims = 0
    self.mapped = False
    self.__get_dims()
    self.__get_data_type()
    if (deallocate == True):
      self._handle = ffi.gc(self.handle, ffc.flexflow_tensor_destroy)
    if (self.is_mapped() == True):
      self.mapped = True

    if owner_op_type != None:
      self.__get_owner_op(owner_op_type)
      assert self.owner_op != None

  def inline_map(self, ffconfig):
    assert self.mapped == False, "Tensor is already mapped."
    ffc.flexflow_tensor_inline_map(self.handle, ffconfig.handle);
    self.mapped = True
    assert self.num_dims > 0, "check dims"

  def inline_unmap(self, ffconfig):
    assert self.mapped == True, "Tensor is not inline mapped."
    ffc.flexflow_tensor_inline_unmap(self.handle, ffconfig.handle);
    self.mapped = False

  def get_array(self, ffconfig, data_type):
    assert self.mapped == True, "Tensor is not mapped."
    raw_ptr = self.__get_raw_ptr(ffconfig, data_type)
    raw_ptr_int = int(ffi.cast("uintptr_t", raw_ptr))
    fflogger.debug("raw_ptr: %s, %d" %( str(raw_ptr), raw_ptr_int))
    strides = None
    if (self.num_dims >= 1 or self.num_dims <= 4):
      shape = self.dims
    else:
      assert 0, "unknow num_dims"
    initializer = RegionNdarray(shape, data_type, raw_ptr_int, strides, False)
    array = np.asarray(initializer)
    return array

  def get_flat_array(self, ffconfig, data_type):
    assert self.mapped == True, "Tensor is not mapped."
    raw_ptr = self.__get_raw_ptr(ffconfig, data_type)
    raw_ptr_int = int(ffi.cast("uintptr_t", raw_ptr))
    fflogger.debug("raw_ptr: %s, %d" %( str(raw_ptr), raw_ptr_int))
    strides = None
    if (self.num_dims >= 1 or self.num_dims <= 4):
      shape_prod = np.prod(self.dims)
      shape = (shape_prod,)
    else:
      assert 0, "unknown num_dims"
    initializer = RegionNdarray(shape, data_type, raw_ptr_int, strides, False)
    array = np.asarray(initializer)
    return array

  def attach_numpy_array(self, ffconfig, np_array):
    assert np_array.__array_interface__['strides'] == None, "numpy array strides is not None"
    np_shape = np_array.shape
    num_dims = len(np_shape)
    assert num_dims == self.num_dims, "please check dims (%d == %d)" %(num_dims, self.num_dims)
    for i in range(0, num_dims):
      assert np_shape[i] == self.dims[i], "please check shape dim %d (%d == %d)" %(i, np_shape[i], self.dims[i])
    np_raw_ptr = np_array.__array_interface__['data']
    raw_ptr = ffi.cast("void*", np_raw_ptr[0])
    fflogger.debug("attach numpy array: %s, %s, %s" %( str(np_raw_ptr), str(raw_ptr), hex(np_raw_ptr[0])))
    self.__attach_raw_ptr(ffconfig, raw_ptr)

  def detach_numpy_array(self, ffconfig):
    self.__detach_raw_ptr(ffconfig)

  def is_mapped(self):
    return ffc.flexflow_tensor_is_mapped(self.handle)
    
  def set_tensor(self, ffmodel, np_array, comm_type):
    assert np_array.__array_interface__['strides'] == None, "Parameter set_weights, numpy array strides is not None"
    np_shape = np_array.shape
    num_dims = len(np_shape)
    assert num_dims == self.num_dims, "please check dims (%d == %d)" %(num_dims, self.num_dims)
    for i in range(0, num_dims):
      assert np_shape[i] == self.dims[i], "please check shape dim %d (%d == %d)" %(i, np_shape[i], self.dims[i])
    c_dims = ffi.new("int[]", self.dims)
    np_raw_ptr = np_array.__array_interface__['data']
    c_comm_type = enum_to_int(ParameterSyncType, comm_type)
    if np_array.dtype == np.float32:
      assert self.data_type == DataType.DT_FLOAT, "Wrong datatype"
      raw_ptr = ffi.cast("float*", np_raw_ptr[0])
      ret_val = ffc.flexflow_tensor_set_tensor_float(self.handle, ffmodel.handle, num_dims, c_dims, raw_ptr, c_comm_type)
    elif np_array.dtype == np.int32:
      assert self.data_type == DataType.DT_INT32, "Wrong datatype"
      raw_ptr = ffi.cast("int*", np_raw_ptr[0])
      ret_val = ffc.flexflow_tensor_set_tensor_int(self.handle, ffmodel.handle, num_dims, c_dims, raw_ptr, c_comm_type)
    else:
      assert 0, "Unsupported datatype"
    fflogger.debug("set tensor raw_ptr: %s, %s, %s, %s" %( str(raw_ptr), str(np_raw_ptr[0]), hex(np_raw_ptr[0]), str(np_shape)))
    assert ret_val == True, ret_val
    
  def get_tensor(self, ffmodel, comm_type):
    shape = self.dims
    if self.data_type == DataType.DT_FLOAT:
      np_array = np.empty(shape, dtype=np.float32)
    elif self.data_type == DataType.DT_INT32:
      np_array = np.empty(shape, dtype=np.int32)
    else:
      assert 0, "Unsupported datatype"
    np_raw_ptr = np_array.__array_interface__['data']
    c_comm_type = enum_to_int(ParameterSyncType, comm_type)
    if np_array.dtype == np.float32:
      raw_ptr = ffi.cast("float*", np_raw_ptr[0])
      ret_val = ffc.flexflow_tensor_get_tensor_float(self.handle, ffmodel.handle, raw_ptr, c_comm_type)
    elif np_array.dtype == np.int32:
      raw_ptr = ffi.cast("int*", np_raw_ptr[0])
      ret_val = ffc.flexflow_tensor_get_tensor_int(self.handle, ffmodel.handle, raw_ptr, c_comm_type)
    fflogger.debug("get weights raw_ptr: %s, %s, %s, %s" %( str(raw_ptr), str(np_raw_ptr[0]), hex(np_raw_ptr[0]), str(shape)))
    assert ret_val == True
    return np_array

  def __get_raw_ptr(self, ffconfig, data_type):
    assert data_type == self.data_type, "Tensor check data type"
    if (data_type == DataType.DT_FLOAT):
      return ffc.flexflow_tensor_get_raw_ptr_float(self.handle, ffconfig.handle)
    elif (data_type == DataType.DT_INT32):
      return ffc.flexflow_tensor_get_raw_ptr_int32(self.handle, ffconfig.handle)
    else:
      assert 0, "unknown data type"

  def __get_dims(self):
    self.num_dims = ffc.flexflow_tensor_get_num_dims(self.handle)
    d = ffc.flexflow_tensor_get_dims(self.handle)
    #fflogger.debug(d[0], d[1], d[2], d[3])
    if (self.num_dims == 1):
      self.dims = (d[0],)
    elif (self.num_dims == 2):
      self.dims = (d[1], d[0])
    elif (self.num_dims == 3):
      self.dims = (d[2], d[1], d[0])
    elif (self.num_dims == 4):
      self.dims = (d[3], d[2], d[1], d[0])
    elif (self.num_dims == 5):
      self.dims = (d[4], d[3], d[2], d[1], d[0])
    else:
      assert 0, "unknown num_dims"

  def __get_data_type(self):
    dtype = ffc.flexflow_tensor_get_data_type(self.handle)
    if (dtype == 40):
      self.data_type = DataType.DT_FLOAT
    elif (dtype == 41):
      self.data_type = DataType.DT_DOUBLE
    elif (dtype == 42):
      self.data_type = DataType.DT_INT32
    elif (dtype == 43):
      self.data_type = DataType.DT_INT64
    elif (dtype == 44):
      self.data_type = DataType.DT_BOOLEAN
    else:
      assert 0, "unknown data type"

  def __get_owner_op(self, op_type):
    op_handle = ffc.flexflow_tensor_get_owner_op(self.handle)
    if op_handle.impl == ffi.NULL:
      self.owner_op = None
    else:
      self.owner_op = convert_op_handle_to_op(op_type, op_handle)

  def __attach_raw_ptr(self, ffconfig, raw_ptr, column_major=True):
    assert self.mapped == False, "Tensor is already mapped."
    ffc.flexflow_tensor_attach_raw_ptr(self.handle, ffconfig.handle, raw_ptr, column_major)
    self.mapped = True

  def __detach_raw_ptr(self, ffconfig):
    assert self.mapped == True, "Tensor is not mapped."
    ffc.flexflow_tensor_detach_raw_ptr(self.handle, ffconfig.handle)
    self.mapped = False

# -----------------------------------------------------------------------
# Parameter
# -----------------------------------------------------------------------

class Parameter(Tensor):
  __slots__ = ['parameter_handle']
  def __init__(self, handle):
    assert ffi.typeof(handle) == ffi.typeof('flexflow_parameter_t'), "Parameter handle is wrong"
    self.parameter_handle = handle
    super(Parameter, self).__init__(self.parameter_handle, deallocate=False)

  def set_weights(self, ffmodel, np_array):
    assert np_array.__array_interface__['strides'] == None, "Parameter set_weights, numpy array strides is not None"
    np_shape = np_array.shape
    num_dims = len(np_shape)
    assert num_dims == self.num_dims, "please check dims (%d == %d)" %(num_dims, self.num_dims)
    for i in range(0, num_dims):
      assert np_shape[i] == self.dims[i], "please check shape dim %d (%d == %d)" %(i, np_shape[i], self.dims[i])
    c_dims = ffi.new("int[]", self.dims)
    np_raw_ptr = np_array.__array_interface__['data']
    raw_ptr = ffi.cast("float*", np_raw_ptr[0])
    fflogger.debug("set weights raw_ptr: %s, %s, %s, %s" %( str(raw_ptr), str(np_raw_ptr[0]), hex(np_raw_ptr[0]), str(np_shape)))
    ret_val = ffc.flexflow_parameter_set_weights_float(self.parameter_handle, ffmodel.handle, num_dims, c_dims, raw_ptr)
    assert ret_val == True, ret_val

  def get_weights(self, ffmodel):
    shape = self.dims
    np_array = np.empty(shape, dtype=np.float32)
    np_raw_ptr = np_array.__array_interface__['data']
    raw_ptr = ffi.cast("float*", np_raw_ptr[0])
    fflogger.debug("get weights raw_ptr: %s, %s, %s, %s" %( str(raw_ptr), str(np_raw_ptr[0]), hex(np_raw_ptr[0]), str(shape)))
    ret_val = ffc.flexflow_parameter_get_weights_float(self.parameter_handle, ffmodel.handle, raw_ptr)
    assert ret_val == True
    return np_array

# -----------------------------------------------------------------------
# FFModel
# -----------------------------------------------------------------------

class FFModel(object):
  """
  """
  __slots__ = ['handle', '_handle', '_layers', '_nb_layers', '_ffconfig', '_tracing_id']
  def __init__(self, ffconfig):
    """Constructor of FFModel.
           
    :param ffconfig: configurations of FlexFlow and the created model.
    :type ffconfig: FFConfig

    :returns:  FFModel -- the model.
    """
    self.handle = ffc.flexflow_model_create(ffconfig.handle)
    self._handle = ffi.gc(self.handle, ffc.flexflow_model_destroy)
    self._layers = dict()
    self._nb_layers = 0
    self._ffconfig = ffconfig
    global ff_tracing_id
    self._tracing_id = ff_tracing_id
    ff_tracing_id += 1

  def get_layers(self):
    return self._layers

  def add_layer(self, op_type, name):
    layer_id = self._nb_layers
    op_handle = ffc.flexflow_model_get_layer_by_id(self.handle, layer_id)
    self._layers[self._nb_layers] = convert_op_handle_to_op(op_type, op_handle, idx=layer_id, name=name)
    self._nb_layers += 1

  def create_tensor(self, dims, data_type, create_grad=True):
    """Instantiate a FlexFlow tensor.
             
    :param x: a shape tuple/list (integers), including the batch size.
    :type x: list of int
             
    :param data_type: the datatype of the created tensor. Options are
      DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_BOOLEAN.
    :type data_type: DataType
    
    :param create_grad: weather the tensor creates a gradients vector. 
      If you don't specify anything, a gradients vector is used.
    :type create_grad: bool

    :returns:  Tensor -- the output tensor.
    """
    c_dims = ffi.new("int[]", dims)
    c_data_type = enum_to_int(DataType, data_type)
    num_dims = len(dims)
    handle = ffc.flexflow_tensor_create(self.handle, num_dims, c_dims, c_data_type, create_grad);
    return Tensor(handle)

  def create_constant(self, dims, value, data_type):
    c_dims = ffi.new("int[]", dims)
    c_data_type = enum_to_int(DataType, data_type)
    num_dims = len(dims)
    handle = ffc.flexflow_constant_create(self.handle, num_dims, c_dims, value, c_data_type);
    return Tensor(handle)

  def exp(self, x, name=None):
    """Exponential activation function.
             
    :param x: the input Tensor.
    :type x: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_exp(self.handle, x.handle, c_name)
    self.add_layer(OpType.EXP, name)
    return Tensor(handle, owner_op_type=OpType.EXP)

  def add(self, x, y, inplace_a=False, name=None):
    """Layer that adds two input Tensors, :attr:`output = x + y`.
             
    :param x: the first input Tensor.
    :type x: Tensor
    
    :param y: the second input Tensor.
    :type y: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_add(self.handle, x.handle, y.handle, inplace_a, c_name)
    self.add_layer(OpType.ADD, name)
    return Tensor(handle, owner_op_type=OpType.ADD)

  def subtract(self, x, y, inplace_a=False, name=None):
    """Layer that subtracts two input Tensors, :attr:`output = x * y`.
             
    :param x: the first input Tensor.
    :type x: Tensor
    
    :param y: the second input Tensor.
    :type y: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_subtract(self.handle, x.handle, y.handle, inplace_a, c_name)
    self.add_layer(OpType.SUBTRACT, name)
    return Tensor(handle, owner_op_type=OpType.SUBTRACT)

  def multiply(self, x, y, inplace_a=False, name=None):
    """Layer that multiplies (element-wise) two input Tensors, :attr:`output = x * y`.
             
    :param x: the first input Tensor.
    :type x: Tensor
    
    :param y: the second input Tensor.
    :type y: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_multiply(self.handle, x.handle, y.handle, inplace_a, c_name)
    self.add_layer(OpType.MULTIPLY, name)
    return Tensor(handle, owner_op_type=OpType.MULTIPLY)

  def divide(self, x, y, inplace_a=False, name=None):
    """Layer that divides (element-wise) two input Tensors, :attr:`output = x / y`.
             
    :param x: the first input Tensor.
    :type x: Tensor
    
    :param y: the second input Tensor.
    :type y: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_divide(self.handle, x.handle, y.handle, inplace_a, c_name)
    self.add_layer(OpType.DIVIDE, name)
    return Tensor(handle, owner_op_type=OpType.DIVIDE)

  def conv2d(self, input, out_channels, 
             kernel_h, kernel_w, 
             stride_h, stride_w, 
             padding_h, padding_w, 
             activation=ActiMode.AC_MODE_NONE, 
             groups=1, use_bias=True, shared_op=None, 
             kernel_initializer=None, bias_initializer=None, name=None):
    """This layer creates a 2D convolution kernel that is convolved with the layer :attr:`input` 
    to produce a tensor of :attr:`output`.
    
    The size of input tensor is :math:`(N, C_{in}, H, W)` and the size of output tensor 
    is :math:`(N, C_{out}, H_{out}, W_{out})`, which can be calculated by:
    
    .. math::
      C_{out} = out\_channels
    
    .. math::
      K_{H} = kernel\_h
             
    .. math::
      K_{W} = kernel\_w
             
    .. math::
      S_{H} = stride\_h
             
    .. math::
      S_{W} = stride\_w
             
    .. math::
      P_{H} = padding\_h
             
    .. math::
      P_{S} = padding\_s
                      
    .. math::
      H_{out} = (H - K_{H} + 2 * P_{H}) / S_{H} + 1 
             
    .. math::
      W_{out} = (W - K_{W} + 2 * P_{W}) / S_{W} + 1      
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param out\_channels: the dimensionality of the output space (i.e. the number of output filters in the convolution).
    :type out\_channels: int

    :param kernel_h: the height of the 2D convolution window: :math:`K_{H}`.
    :type kernel_h: int

    :param kernel_w: the width of the 2D convolution window: :math:`K_{W}`.
    :type kernel_w: int

    :param stride_h: the stride of the convolution along the height: :math:`S_{H}`.
    :type stride_h: int

    :param stride_w: the stride of the convolution along the width: :math:`S_{W}`.
    :type stride_w: int

    :param padding_h: the amount of implicit zero-paddings along the height: :math:`P_{H}`.
    :type padding_h: int

    :param padding_w: the amount of implicit zero-paddings along the width: :math:`P_{W}`.
    :type padding_w: int   

    :param activation: Activation function to use. Default is ActiMode.AC_MODE_NONE.
    :type activation: ActiMode   
 
    :param groups: the number of groups in this convolution
    :type groups: int   
            
    :param use_bias: whether the layer uses a bias vector. Default is True.
    :type use_bias: bool  

    :param shared_op: the layer whose parameters are shared with. Default is None.
    :type shared_op: Op  
             
    :param kernel_initializer: Initializer for the kernel weights matrix. If it is set to None, the GlorotUniformInitializer is applied.
    :type kernel_initializer: Initializer

    :param bias_initializer: Initializer for the bias vector. If it is set to None, the ZeroInitializer is applied.
    :type bias_initializer: Initializer
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    shared_op_handle = self.__get_op_handle(shared_op)
    c_activation = enum_to_int(ActiMode, activation)
    kernel_init_handle = self.__get_initializer_handle(kernel_initializer)
    bias_init_handle = self.__get_initializer_handle(bias_initializer)
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_conv2d(self.handle, input.handle, out_channels, kernel_h, kernel_w, stride_h, stride_w, padding_h, padding_w, c_activation, groups, use_bias, shared_op_handle, kernel_init_handle, bias_init_handle, c_name)
    self.add_layer(OpType.CONV2D, name)
    return Tensor(handle, owner_op_type=OpType.CONV2D)

  def embedding(self, input, num_entires, out_dim, 
                aggr, shared_op=None, kernel_initializer=None, name=None):
    """Layer that turns positive integers into dense vectors of fixed size
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param num_entires: size of the vocabulary, i.e. maximum integer index + 1
    :type num_entires: int
                
    :param out_dim: dimension of the dense embedding.
    :type out_dim: int
                
    :param aggr: aggregation mode. Options are AGGR_MODE_NONE, AGGR_MODE_SUM and AGGR_MODE_AVG.
    :type aggr: AggrMode
                
    :param shared_op: the layer whose parameters are shared with. Default is None.
    :type shared_op: Op  
             
    :param kernel_initializer: Initializer for the kernel weights matrix. If it is set to None, the GlorotUniformInitializer is applied.
    :type kernel_initializer: Initializer
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    shared_op_handle = self.__get_op_handle(shared_op)
    c_aggr = enum_to_int(AggrMode, aggr)
    assert (type(kernel_initializer) is GlorotUniformInitializer) or (type(kernel_initializer) is ZeroInitializer) or (type(kernel_initializer) is UniformInitializer) or (type(kernel_initializer) is NormInitializer), "unknow initializer type"
    handle = ffc.flexflow_model_add_embedding(self.handle,  input.handle, num_entires, out_dim, c_aggr, shared_op_handle, kernel_initializer.handle, c_name)
    self.add_layer(OpType.EMBEDDING, name)
    return Tensor(handle, owner_op_type=OpType.EMBEDDING)

  def pool2d(self, input, kernel_h, kernel_w, 
             stride_h, stride_w, 
             padding_h, padding_w, 
             pool_type=PoolType.POOL_MAX, 
             activation=ActiMode.AC_MODE_NONE, name=None):
    """Pooling operation for 2D spatial data.
    
    The size of input tensor is :math:`(N, C_{in}, H, W)` and the size of output tensor 
    is :math:`(N, C_{out}, H_{out}, W_{out})`, which can be calculated by:
    
    .. math::
      C_{out} = out\_channels
    
    .. math::
      K_{H} = kernel\_h
             
    .. math::
      K_{W} = kernel\_w
             
    .. math::
      S_{H} = stride\_h
             
    .. math::
      S_{W} = stride\_w
             
    .. math::
      P_{H} = padding\_h
             
    .. math::
      P_{S} = padding\_s
                      
    .. math::
      H_{out} = (H - K_{H} + 2 * P_{H}) / S_{H} + 1 
             
    .. math::
      W_{out} = (W - K_{W} + 2 * P_{W}) / S_{W} + 1      
             
    :param input: the input Tensor.
    :type input: Tensor

    :param kernel_h: the height of the 2D pooling window: :math:`K_{H}`.
    :type kernel_h: int

    :param kernel_w: the width of the 2D pooling window: :math:`K_{W}`.
    :type kernel_w: int

    :param stride_h: the stride of the pooling along the height: :math:`S_{H}`.
    :type stride_h: int

    :param stride_w: the stride of the pooling along the width: :math:`S_{W}`.
    :type stride_w: int

    :param padding_h: the amount of implicit zero-paddings along the height: :math:`P_{H}`.
    :type padding_h: int

    :param padding_w: the amount of implicit zero-paddings along the width: :math:`P_{W}`.
    :type padding_w: int

    :param activation: Tyoe of pooling function to use. If you don't specify anything, PoolType.POOL_MAX is applied.
    :type activation: PoolType

    :param activation: Activation function to use. Default is ActiMode.AC_MODE_NONE.
    :type activation: ActiMode
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    c_pool_type = enum_to_int(PoolType, pool_type)
    c_activation = enum_to_int(ActiMode, activation)
    handle = ffc.flexflow_model_add_pool2d(self.handle, input.handle, kernel_h, kernel_w, stride_h, stride_w, padding_h, padding_w, c_pool_type, c_activation, c_name)
    self.add_layer(OpType.POOL2D, name)
    return Tensor(handle, owner_op_type=OpType.POOL2D)

  def batch_norm(self, input, relu=True, name=None):
    """Layer that normalizes its inputs.

    Batch normalization applies a transformation that maintains the mean output close to 0 and the output standard deviation close to 1.
             
    :param input: the list of input Tensors.
    :type input: Tensor
    
    :param relu: whether a ReLU function is applied. Default is True.
    :type relu: bool
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_batch_norm(self.handle, input.handle, relu, c_name)
    self.add_layer(OpType.BATCH_NORM, name)
    return Tensor(handle, owner_op_type=OpType.BATCH_NORM)

  def batch_matmul(self, A, B, a_seq_length_dim=None, b_seq_length_dim=None, name=None):
    """Layer that applied batched matrix multiplication onto two input Tensors, :attr:`output = x * y`.
             
    :param A: the first input Tensor.
    :type A: Tensor
    
    :param B: the second input Tensor.
    :type B: Tensor

    :param a_seq_length_dim: an int when set indicating the a_seq_length_dim dimention of A is a sequence_length dimension
    :type a_seq_length_dim: int

    :param b_seq_length_dim: an int when set indicating the b_seq_length_dim dimention of B is a sequence_length dimension
    :type b_seq_length_dim: int
            
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    if a_seq_length_dim is None:
      a_seq_length_dim = -1
    if b_seq_length_dim is None:
      b_seq_length_dim = -1
    handle = ffc.flexflow_model_add_batch_matmul(self.handle, A.handle, B.handle, a_seq_length_dim, b_seq_length_dim)
    self.add_layer(OpType.BATCH_MATMUL, name)
    return Tensor(handle, owner_op_type=OpType.BATCH_MATMUL)

  def dense(self, input, out_dim, 
            activation=ActiMode.AC_MODE_NONE, 
            use_bias=True, shared_op=None,
            kernel_initializer=None, bias_initializer=None, name=None):
    """Dense implements the operation: :attr:`output = activation(dot(input, kernel) + bias)` where 
    :attr:`activation` is the element-wise activation function passed as the activation argument, 
    :attr:`kernel` is a weights matrix created by the layer, and 
    :attr:`bias` is a bias vector created by the layer (only applicable if :attr:`use_bias` is True).
    
    The size of input tensor is :math:`(N, C_{in})` and the size of output tensor 
    is :math:`(N, C_{out})`, where :math:`C_{out} = out\_dim`   
             
    :param input: the input Tensor.
    :type input: Tensor
            
    :param out\_dim: dimensionality of the output space.
    :type out\_dim: int

    :param activation: Activation function to use. Default is ActiMode.AC_MODE_NONE.
    :type activation: ActiMode   
             
    :param use_bias: whether the layer uses a bias vector. Default is True.
    :type use_bias: bool  

    :param shared_op: the layer whose parameters are shared with. Default is None.
    :type shared_op: Op  
             
    :param kernel_initializer: Initializer for the kernel weights matrix. If it is set to None, the GlorotUniformInitializer is applied.
    :type kernel_initializer: Initializer

    :param bias_initializer: Initializer for the bias vector. If it is set to None, the ZeroInitializer is applied.
    :type bias_initializer: Initializer
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    shared_op_handle = self.__get_op_handle(shared_op)
    c_activation = enum_to_int(ActiMode, activation)
    kernel_init_handle = self.__get_initializer_handle(kernel_initializer)
    bias_init_handle = self.__get_initializer_handle(bias_initializer)
    handle = ffc.flexflow_model_add_dense(self.handle,  input.handle, out_dim, c_activation, use_bias, shared_op_handle, kernel_init_handle, bias_init_handle, c_name)
    self.add_layer(OpType.LINEAR, name)
    return Tensor(handle, owner_op_type=OpType.LINEAR)

  def concat(self, tensors, axis, name=None):
    """Layer that concatenates a list of inputs.

    It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single tensor that is the concatenation of all inputs.
             
    :param input: the list of input Tensors.
    :type input: List of Tensors
    
    :param axis: the dimension along which to concatenate.
    :type axis: int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    assert type(tensors) is list, "tensors should be a list"
    tensor_handle_list = []
    n = len(tensors)
    assert n <= 256, "Please increase MAX_NUM_INPUTS"
    for tensor in tensors:
      tensor_handle_list.append(tensor.handle)
    c_tensor_handle_list = ffi.new("flexflow_tensor_t[]", tensor_handle_list)
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_concat(self.handle, n, c_tensor_handle_list, axis, c_name)
    self.add_layer(OpType.CONCAT, name)
    return Tensor(handle, owner_op_type=OpType.CONCAT)

  def split(self, input, sizes, axis, name=None):
    """Layer that splits a :attr:`input` tensor into a list of tensors.
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param sizes: either an int indicating the number of splits along axis or a Python list containing the sizes of each output tensor along axis. If a scalar, then it must evenly divide :attr:`input.dims[axis]`; otherwise the sum of sizes along the split axis must match that of the :attr:`input`. 
    :type sizes: int or list of int
    
    :param axis: the dimension along which to split.
    :type axis: int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  list of Tensors -- the output tensors.
    """
    if type(sizes) is list:
      split = sizes
    else:
      assert input.dims[axis] % sizes == 0, "Split dimension is not divisible"
      split = [input.dims[axis] // sizes for i in range(sizes)]
    n = len(split)
    assert n <= 256, "Please increase MAX_NUM_OUTPUTS"
    c_split = ffi.new("int[]", split)
    c_outputs_handle_list = ffi.new("flexflow_tensor_t[256]")
    c_name = get_c_name(name)
    ffc.flexflow_model_add_split(self.handle, input.handle, n, c_outputs_handle_list, c_split, axis, c_name)
    output_tensor_list = []
    for i in range(n):
      tensor_p_handle = ffi.new("flexflow_tensor_t*")
      tensor_p_handle.impl = c_outputs_handle_list[i].impl
      output_tensor_list.append(Tensor(None, owner_op_type=OpType.SPLIT, p_handle=tensor_p_handle))
    self.add_layer(OpType.SPLIT, name)
    del c_outputs_handle_list
    return output_tensor_list

  def flat(self, input, name=None):
    """Flattens the input. Does not affect the batch size.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_flat(self.handle, input.handle, c_name)
    self.add_layer(OpType.FLAT, name)
    return Tensor(handle, owner_op_type=OpType.FLAT)

  def softmax(self, input, axis=-1, name=None):
    """Softmax activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_softmax(self.handle, input.handle, axis, c_name)
    self.add_layer(OpType.SOFTMAX, name)
    return Tensor(handle, owner_op_type=OpType.SOFTMAX)

  def reshape(self, input, shape, name=None):
    """Layer that reshapes inputs into the given shape.
    
    Given a :attr:`input` tensor, this operation returns a output tensor that has the same values as tensor in the same order, 
    except with a new shape given by :attr:`shape`.
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param shape: A list defining the shape of the output tensor.
    :type shape: list of int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    c_shape = ffi.new("int[]", shape)
    handle = ffc.flexflow_model_add_reshape(self.handle, input.handle, len(shape), c_shape, c_name)
    self.add_layer(OpType.RESHAPE, name)
    return Tensor(handle, owner_op_type=OpType.RESHAPE)

  def transpose(self, input, perm, name=None):
    """Transposes the :attr:`input` tensor. Permutes the dimensions according to perm
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param perm: A permutation of the dimensions of a.
    :type perm: List of int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    c_perm = ffi.new("int[]", perm)
    handle = ffc.flexflow_model_add_transpose(self.handle, input.handle, len(perm), c_perm, c_name)
    self.add_layer(OpType.TRANSPOSE, name)
    return Tensor(handle, owner_op_type=OpType.TRANSPOSE)

  def reverse(self, input, axis, name=None):
    """Layer that reverses specific dimensions of a tensor.
    
    Given a :attr:`input` tensor, this operation reverses the dimension :attr:`axis`.
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param axis: the dimension to reverse.
    :type axis: int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_reverse(self.handle, input.handle, axis, c_name)
    self.add_layer(OpType.REVERSE, name)
    return Tensor(handle, owner_op_type=OpType.REVERSE)

  def scalar_multiply(self, input, scalar, inplace=True, name=None):
    """Scalar multiplication of a tensor by an scalar.
             
    :param input: the input Tensor.
    :type input: Tensor

    :param input: the scalar
    :type scalar: float
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_scalar_multiply(self.handle, input.handle, scalar, inplace, c_name)
    self.add_layer(OpType.SCALAR_MULTIPLY, name)
    return Tensor(handle, owner_op_type=OpType.SCALAR_MULTIPLY)

  def scalar_add(self, input, scalar, inplace=True, name=None):
    """Scalar addition of a scalar to each entry of a tensor.
             
    :param input: the input Tensor.
    :type input: Tensor

    :param input: the scalar
    :type scalar: float
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_scalar_add(self.handle, input.handle, scalar, inplace, c_name)
    self.add_layer(OpType.SCALAR_ADD, name)
    return Tensor(handle, owner_op_type=OpType.SCALAR_ADD)

  def scalar_sub(self, input, scalar, inplace=True, name=None):
    """Scalar subtraction of a scalar to each entry of a tensor.
             
    :param input: the input Tensor.
    :type input: Tensor

    :param input: the scalar
    :type scalar: float
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_scalar_sub(self.handle, input.handle, scalar, inplace, c_name)
    self.add_layer(OpType.SCALAR_SUB, name)
    return Tensor(handle, owner_op_type=OpType.SCALAR_SUB)

  def scalar_true_divide(self, input, scalar, inplace=True, name=None):
    """Scalar regular division of a tensor by an scalar.
             
    :param input: the input Tensor.
    :type input: Tensor

    :param input: the scalar
    :type scalar: float
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_scalar_truediv(self.handle, input.handle, scalar, inplace, c_name)
    self.add_layer(OpType.SCALAR_TRUEDIV, name)
    return Tensor(handle, owner_op_type=OpType.SCALAR_TRUEDIV)

  def gelu(self, input, inplace=True, name=None):
    """Gaussian Error Linear Unit activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_gelu(self.handle, input.handle, c_name)
    self.add_layer(OpType.GELU, name)
    return Tensor(handle, owner_op_type=OpType.GELU)
  
  def relu(self, input, inplace=True, name=None):
    """Rectified Linear Unit activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_relu(self.handle, input.handle, inplace, c_name)
    self.add_layer(OpType.RELU, name)
    return Tensor(handle, owner_op_type=OpType.RELU)

  def identity(self, input, name=None):
    """Identity function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_identity(self.handle, input.handle, c_name)
    self.add_layer(OpType.IDENTITY, name)
    return Tensor(handle, owner_op_type=OpType.IDENTITY)
  
  def sigmoid(self, input, name=None):
    """Sigmoid activation function, :math:`sigmoid(x) = 1 / (1 + exp(-x))`.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_sigmoid(self.handle, input.handle, c_name)
    self.add_layer(OpType.SIGMOID, name)
    return Tensor(handle, owner_op_type=OpType.SIGMOID)

  def tanh(self, input, name=None):
    """Hyperbolic tangent activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_tanh(self.handle, input.handle, c_name)
    self.add_layer(OpType.TANH, name)
    return Tensor(handle, owner_op_type=OpType.TANH)

  def elu(self, input, inplace=True, name=None):
    """Exponential Linear Unit. activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_elu(self.handle, input.handle, inplace, c_name)
    self.add_layer(OpType.ELU, name)
    return Tensor(handle, owner_op_type=OpType.ELU)

  def dropout(self, input, rate, seed, name=None):
    """The Dropout layer randomly sets input units to 0 with 
    a frequency of :attr:`rate` at each step during training time, 
    which helps prevent overfitting. 
    Inputs not set to 0 are scaled up by 1/(1 - rate) such that the 
    sum over all inputs is unchanged.
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param rate: Fraction of the input units to drop.
    :type rate: float(0-1)
    
    :param seed: random seed.
    :type seed: int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_dropout(self.handle, input.handle, rate, seed, c_name)
    self.add_layer(OpType.DROPOUT, name)
    return Tensor(handle, owner_op_type=OpType.DROPOUT)
    
  def multihead_attention(self, query, key, value, 
                          embed_dim, num_heads, 
                          kdim=0, vdim=0, dropout=0.0, 
                          bias=True, add_bias_kv=False, add_zero_attn=False, 
                          kernel_initializer=None, name=None):
    """Defines the MultiHead Attention operation as described in Attention Is All You Need 
    which takes in the tensors :attr:`query`, :attr:`key`, and :attr:`value`, 
    and returns the dot-product attention between them:.
             
    :param query: the query Tensor.
    :type query: Tensor
    
    :param key: the key Tensor.
    :type key: Tensor
                          
    :param value: the value Tensor.
    :type value: Tensor

    :param embed_dim: total dimension of the model
    :type embed_dim: int
                          
    :param num_heads: Number of attention heads.
    :type num_heads: int
                          
    :param kdim: total number of features in key. Default is 0
    :type kdim: int
                          
    :param vdim: total number of features in value. Default is 0
    :type vdim: int
                          
    :param dropout: a Dropout layer on attn_output_weights. Default is 0.0
    :type dropout: float(0-1)
                          
    :param bias: Whether the dense layers use bias vectors. Default is True.
    :type bias: bool
                          
    :param add_bias_kv: add bias to the key and value sequences at dim=0. Default is False.
    :type add_bias_kv: bool
                          
    :param add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. Default is False.
    :type add_zero_attn: bool
    
    :param kernel_initializer: Initializer for dense layer kernels. If it is set to None, the GlorotUniformInitializer is applied.
    :type kernel_initializer: Initializer
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """     
    c_name = get_c_name(name)                 
    kernel_init_handle = self.__get_initializer_handle(kernel_initializer)
    handle = ffc.flexflow_model_add_multihead_attention(self.handle, query.handle, key.handle, value.handle, embed_dim, num_heads, kdim, vdim, dropout, bias, add_bias_kv, add_zero_attn, kernel_init_handle, c_name)
    self.add_layer(OpType.MULTIHEAD_ATTENTION, name)
    return Tensor(handle, owner_op_type=OpType.MULTIHEAD_ATTENTION)

  def reset_metrics(self):
    """Reset performance metrics.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_reset_metrics(self.handle)

  def init_layers(self):
    """Initialize layers.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_init_layers(self.handle)

  def prefetch(self):
    ffc.flexflow_model_prefetch(self.handle)

  def forward(self, seq_length=None):
    """Forward propagation of all layers.
             
    :returns:  None -- no returns.
    """
    if seq_length is None:
      seq_length = -1
    ffc.flexflow_model_forward(self.handle, seq_length)

  #TODO: seperate compute_metrics from backward
  def backward(self, seq_length=None):
    """Backward propagation of all layers.
             
    :returns:  None -- no returns.
    """
    if seq_length is None:
      seq_length = -1
    ffc.flexflow_model_backward(self.handle, seq_length)

  def compute_metrics(self):
    """Compute performance metrics.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_compute_metrics(self.handle)

  def update(self):
    """Update weights and biases of all layers.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_update(self.handle)

  def compile(self, optimizer=None, loss_type=None, metrics=None, comp_mode=None):
    """Configure the model for trainting. FlexFlow uses lazy initialization,
    so the actual creating of all operations (including creating and partitioning
    of weight, bias and output tensors) happen during compile. 
             
    :param optimizer: optimizer instance.
    :type optimizer: Optimizer
    
    :param loss_type: Enum of LossType. 
      Options are LOSS_CATEGORICAL_CROSSENTROPY, LOSS_SPARSE_CATEGORICAL_CROSSENTROPY, 
      LOSS_MEAN_SQUARED_ERROR_AVG_REDUCE and LOSS_MEAN_SQUARED_ERROR_SUM_REDUCE.
    :type loss_type: LossType
    
    :param metrics: List of metrics to be evaluated by the model during training and testing. 
      Each of this is a Enum of MetricsType. Options are METRICS_ACCURACY, 
      METRICS_CATEGORICAL_CROSSENTROPY, METRICS_SPARSE_CATEGORICAL_CROSSENTROPY,
      METRICS_MEAN_SQUARED_ERROR, METRICS_ROOT_MEAN_SQUARED_ERROR, METRICS_MEAN_ABSOLUTE_ERROR
    :type metrics: MetricsType

    :param comp_mode: Enum of CompMode.
      Options are COMP_MODE_TRAINING, COMP_MODE_INFERENCE
    :type comp_mode: CompMode

    :returns:  None -- no returns.
    """
    self.optimizer = optimizer

    c_loss_type = enum_to_int(LossType, loss_type)
    metrics_int = []
    for metric in metrics:
      metrics_int.append(enum_to_int(MetricsType, metric))
    c_metrics = ffi.new("int[]", metrics_int)
    if comp_mode == None:
      comp_mode = CompMode.TRAINING
    c_comp_mode = enum_to_int(CompMode, comp_mode)
    ffc.flexflow_model_compile(self.handle, c_loss_type, c_metrics, len(metrics), c_comp_mode)

  def fit(self, x=None, y=None, batch_size=None, epochs=1):
    """Trains the model for a fixed number of epochs (iterations on a dataset).
             
    :param x: Input data. It can be a Dataloader instance or a list of Dataloader instances.
    :type x: Dataloader
    
    :param y: Target data (label). It can be a Dataloader instance or a list of Dataloader instances.
    :type y: Dataloader
    
    :param batch_size: Number of samples per gradient update. It must be identical with :attr:`-b`
      or :attr:`--batch-size` from the command line.
    :type batch_size: int
    
    :param epochs: Number of epochs to train the model. 
      An epoch is an iteration over the entire :attr:`x` and :attr:`y` data provided.
      The default value is 1.
    :type epochs: int
             
    :returns:  None -- no returns.
    """
    if (isinstance(x, list) == False):
      dataloaders = [x]
    else:
      dataloaders = x
    dataloaders.append(y)

    num_samples = y.num_samples
    batch_size = self._ffconfig.batch_size
    self._tracing_id += 1 # get a new tracing id
    for epoch in range(0,epochs):
      for d in dataloaders:
        d.reset()
      self.reset_metrics()
      iterations = num_samples / batch_size
      for iter in range(0, int(iterations)):
        for d in dataloaders:
          d.next_batch(self)
        self._ffconfig.begin_trace(self._tracing_id)
        self.forward()
        self.zero_gradients()
        self.backward()
        self.update()
        self._ffconfig.end_trace(self._tracing_id)
          
  def eval(self, x=None, y=None, batch_size=None):
    """Returns the loss value & metrics values for the model in test mode. 
             
    :param x: Input data. It can be a Dataloader instance or a list of Dataloader instances.
    :type x: Dataloader
    
    :param y: Target data (label). It can be a Dataloader instance or a list of Dataloader instances.
    :type y: Dataloader
    
    :param batch_size: Number of samples per gradient update. It must be identical with :attr:`-b`
      or :attr:`--batch-size` from the command line.
    :type batch_size: int
    
    :param epochs: Number of epochs to train the model. 
      An epoch is an iteration over the entire :attr:`x` and :attr:`y` data provided.
      The default value is 1.
    :type epochs: int
             
    :returns:  None -- no returns.
    """
    if (isinstance(x, list) == False):
      dataloaders = [x]
    else:
      dataloaders = x
    dataloaders.append(y)

    num_samples = y.num_samples
    batch_size = self._ffconfig.batch_size
    for d in dataloaders:
      d.reset()
    self.reset_metrics()
    iterations = num_samples / batch_size
    self._tracing_id += 1 # get a new tracing id
    for iter in range(0, int(iterations)):
      for d in dataloaders:
        d.next_batch(self)
      self._ffconfig.begin_trace(self._tracing_id)
      self.forward()
      self.compute_metrics()
      self._ffconfig.end_trace(self._tracing_id)

  def zero_gradients(self):
    """Empty the gradients of all layers.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_zero_gradients(self.handle)

  def set_optimizer(self, optimizer):
    if isinstance(optimizer, SGDOptimizer) == True:
      ffc.flexflow_model_set_sgd_optimizer(self.handle, optimizer.handle)
    elif isinstance(optimizer, AdamOptimizer) == True:
      ffc.flexflow_model_set_adam_optimizer(self.handle, optimizer.handle)
    elif optimizer == None:
      pass
    else:
      assert 0, "[Model]: unknown optimizer"

  optimizer = property(fset=set_optimizer)

  def print_layers(self, id=-1):
    ffc.flexflow_model_print_layers(self.handle, id)

  def get_layer_by_id(self, layer_id):
    return self._layers[layer_id]

  def get_layer_by_name(self, layer_name):
    for layer_id in self._layers:
      layer = self._layers[layer_id]
      if layer.name == layer_name:
        return layer
    assert 0, "Can not find the layer with the name"
    return None

  def get_tensor_by_id(self, id):
    handle = ffc.flexflow_model_get_parameter_by_id(self.handle, id)
    return Parameter(handle)

  @property
  def label_tensor(self):
    handle = ffc.flexflow_model_get_label_tensor(self.handle)
    return Tensor(handle, deallocate=False)

  def get_perf_metrics(self):
    handle = ffc.flexflow_model_get_perf_metrics(self.handle)
    return PerfMetrics(handle)

  def create_data_loader(self, batch_tensor, full_array):
    """Create a SingleDataloader instance. 
             
    :param batch_tensor: a batch-sized tensor. Usually it is a input tensor of the model.  
    :type batch_tensor: Tensor
    
    :param full_array: the entire data.
    :type full_array: Numpy Array
             
    :returns:  SingleDataloader -- returns a dataloader instance.
    """
    full_array_shape = full_array.shape
    num_samples = full_array_shape[0]
    num_dim = len(full_array_shape)
    if (full_array.dtype == "float32"):
      datatype = DataType.DT_FLOAT
    elif (full_array.dtype == "int32"):
      datatype = DataType.DT_INT32
    else:
      assert 0, "unsupported datatype"

    if (num_dim == 2):
      full_tensor = self.create_tensor([num_samples, full_array_shape[1]], datatype)
    elif (num_dim == 4):
      full_tensor = self.create_tensor([num_samples, full_array_shape[1], full_array_shape[2], full_array_shape[3]], datatype)
    else:
      assert 0, "unsupported dims"

    full_tensor.attach_numpy_array(self._ffconfig, full_array)
    dataloader = SingleDataLoader(self, batch_tensor, full_tensor, num_samples, datatype)
    full_tensor.detach_numpy_array(self._ffconfig)

    return dataloader
    
  def create_data_loader2(self, batch_tensor, full_array):
    """Create a SingleDataloader instance. 
             
    :param batch_tensor: a batch-sized tensor. Usually it is a input tensor of the model.  
    :type batch_tensor: Tensor
    
    :param full_array: the entire data.
    :type full_array: Numpy Array
             
    :returns:  SingleDataloader -- returns a dataloader instance.
    """
    full_array_shape = full_array.shape
    num_samples = full_array_shape[0]
    if (full_array.dtype == "float32"):
      datatype = DataType.DT_FLOAT
    elif (full_array.dtype == "int32"):
      datatype = DataType.DT_INT32
    else:
      assert 0, "unsupported datatype"
    np_raw_ptr = full_array.__array_interface__['data']
    raw_ptr = ffi.cast("float*", np_raw_ptr[0])
    print("numpy array: %s, %s, %s" %( str(np_raw_ptr), str(raw_ptr), hex(np_raw_ptr[0])))
    dataloader = SingleDataLoader(self, batch_tensor, raw_ptr, num_samples, datatype)

    return dataloader

  def __get_initializer_handle(self, initializer):
    if (initializer == None):
      null_initializer = Initializer(None)
      return null_initializer.handle
    else:
      return initializer.handle

  def __get_op_handle(self, shared_op):
    if shared_op == None:
      op_handle = ffi.new('flexflow_op_t *')
      op_handle.impl = ffi.NULL
      op = Op(op_handle[0])
    else:
      op = shared_op
    return op.handle

# -----------------------------------------------------------------------
# SGDOptimizer
# -----------------------------------------------------------------------

class SGDOptimizer(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, lr=0.01, momentum=0.0, nesterov=False, weight_decay=0.0):
    self.handle = ffc.flexflow_sgd_optimizer_create(ffmodel.handle, lr, momentum, nesterov, weight_decay)
    self._handle = ffi.gc(self.handle, ffc.flexflow_sgd_optimizer_destroy)

  def set_learning_rate(self, learning_rate):
    ffc.flexflow_sgd_optimizer_set_lr(self.handle, learning_rate)

# -----------------------------------------------------------------------
# AdamOptimizer
# -----------------------------------------------------------------------

class AdamOptimizer(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, alpha=0.001, beta1=0.9, beta2=0.999, weight_decay=0.0, epsilon=1e-8):
    self.handle = ffc.flexflow_adam_optimizer_create(ffmodel.handle, alpha, beta1, beta2, weight_decay, epsilon)
    self._handle = ffi.gc(self.handle, ffc.flexflow_adam_optimizer_destroy)

  def set_learning_rate(self, learning_rate):
    ffc.flexflow_adam_optimizer_set_lr(self.handle, learning_rate)

# -----------------------------------------------------------------------
# Initializer
# -----------------------------------------------------------------------
class Initializer(object):
  __slots__ = ['handle', 'p_handle']
  def __init__(self, handle, p_handle=0):
    self.p_handle = ffi.new('flexflow_initializer_t *')
    if (handle == None):
      self.p_handle.impl = ffi.NULL
    else:
      self.p_handle.impl = handle.impl
    self.handle = self.p_handle[0]
    assert ffi.typeof(self.handle) == ffi.typeof('flexflow_initializer_t'), "Initializer handle is wrong"

# -----------------------------------------------------------------------
# GlorotUniform
# -----------------------------------------------------------------------

class GlorotUniformInitializer(Initializer):
  __slots__ = ['glorot_handle', '_glorot_handle']
  def __init__(self, seed):
    self.glorot_handle = ffc.flexflow_glorot_uniform_initializer_create(seed)
    self._glorot_handle = ffi.gc(self.glorot_handle, ffc.flexflow_glorot_uniform_initializer_destroy)
    super(GlorotUniformInitializer, self).__init__(self.glorot_handle)

# -----------------------------------------------------------------------
# ZeroInitializer
# -----------------------------------------------------------------------

class ZeroInitializer(Initializer):
  __slots__ = ['zero_handle', '_zero_handle']
  def __init__(self):
    self.zero_handle = ffc.flexflow_zero_initializer_create()
    self._zero_handle = ffi.gc(self.zero_handle, ffc.flexflow_zero_initializer_destroy)
    super(ZeroInitializer, self).__init__(self.zero_handle)

# -----------------------------------------------------------------------
# UniformInitializer
# -----------------------------------------------------------------------

class UniformInitializer(Initializer):
  __slots__ = ['uniform_handle', '_uniform_handle']
  def __init__(self, seed, minv, maxv):
    self.uniform_handle = ffc.flexflow_uniform_initializer_create(seed, minv, maxv)
    self._uniform_handle = ffi.gc(self.uniform_handle, ffc.flexflow_uniform_initializer_destroy)
    super(UniformInitializer, self).__init__(self.uniform_handle)

# -----------------------------------------------------------------------
# NormInitializer
# -----------------------------------------------------------------------

class NormInitializer(Initializer):
  __slots__ = ['norm_handle', '_norm_handle']
  def __init__(self, seed, meanv, stddev):
    self.norm_handle = ffc.flexflow_norm_initializer_create(seed, meanv, stddev)
    self._norm_handle = ffi.gc(self.norm_handle, ffc.flexflow_norm_initializer_destroy)
    super(NormInitializer, self).__init__(self.norm_handle)

# -----------------------------------------------------------------------
# PerfMetrics
# -----------------------------------------------------------------------

class PerfMetrics(object):
  __slots__= ['handle', '_handle']
  def __init__(self, handle):
    self.handle = handle
    self._handle = ffi.gc(self.handle, ffc.flexflow_per_metrics_destroy)

  def get_accuracy(self):
    return ffc.flexflow_per_metrics_get_accuracy(self.handle)

# -----------------------------------------------------------------------
# NetConfig
# -----------------------------------------------------------------------

class NetConfig(object):
  def __init__(self):
    self.handle = ffc.flexflow_net_config_create()
    self._handle = ffi.gc(self.handle, ffc.flexflow_net_config_destroy)
    cpath = ffc.flexflow_net_config_get_dataset_path(self.handle)
    self.dataset_path = ffi.string(cpath)

# -----------------------------------------------------------------------
# DLRMConfig
# -----------------------------------------------------------------------

class DLRMConfig(object):
  def __init__(self):
    self.handle = ffc.flexflow_dlrm_config_create()
    self._handle = ffi.gc(self.handle, ffc.flexflow_dlrm_config_destroy)

    cstr = ffc.flexflow_dlrm_config_get_dataset_path(self.handle)
    self.dataset_path = ffi.string(cstr)

    cstr = ffc.flexflow_dlrm_config_get_arch_interaction_op(self.handle)
    self.arch_interaction_op = ffi.string(cstr)

    self.sparse_feature_size = ffc.flexflow_dlrm_config_get_sparse_feature_size(self.handle)
    self.sigmoid_bot = ffc.flexflow_dlrm_config_get_sigmoid_bot(self.handle)
    self.sigmoid_top = ffc.flexflow_dlrm_config_get_sigmoid_top(self.handle)
    self.embedding_bag_size = ffc.flexflow_dlrm_config_get_embedding_bag_size(self.handle)
    self.loss_threshold = ffc.flexflow_dlrm_config_get_loss_threshold(self.handle)

    mlp_bot_c = ffc.flexflow_dlrm_config_get_mlp_bot(self.handle)
    self.mlp_bot = []
    for i in range(0, mlp_bot_c[0]):
      self.mlp_bot.append(mlp_bot_c[i+1])

    mlp_top_c = ffc.flexflow_dlrm_config_get_mlp_top(self.handle)
    self.mlp_top = []
    for i in range(0, mlp_top_c[0]):
      self.mlp_top.append(mlp_top_c[i+1])

    embedding_size_c = ffc.flexflow_dlrm_config_get_embedding_size(self.handle)
    self.embedding_size = []
    for i in range(0, embedding_size_c[0]):
      self.embedding_size.append(embedding_size_c[i+1])

# -----------------------------------------------------------------------
# DataLoader
# -----------------------------------------------------------------------

class DataLoader4D(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, input, label, full_input=0, full_label=0, num_samples=0, ffnetconfig=0):
    if (ffnetconfig == 0):
      self.handle = ffc.flexflow_dataloader_4d_create_v2(ffmodel.handle, input.handle, label.handle, full_input.handle, full_label.handle, num_samples)
    else:
      self.handle = ffc.flexflow_dataloader_4d_create(ffmodel.handle, ffnetconfig.handle, input.handle, label.handle)
    self._handle = ffi.gc(self.handle, ffc.flexflow_dataloader_4d_destroy)

  @property
  def num_samples(self):
    return ffc.flexflow_dataloader_4d_get_num_samples(self.handle)

  @num_samples.setter
  def num_samples(self, samples):
    ffc.flexflow_dataloader_4d_set_num_samples(self.handle, samples)

  def next_batch(self, ffmodel):
    ffc.flowflow_dataloader_4d_next_batch(self.handle, ffmodel.handle)

  def reset(self):
    ffc.flexflow_dataloader_4d_reset(self.handle)

class DataLoader2D(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, input, label, full_input=0, full_label=0, num_samples=0):
    self.handle = ffc.flexflow_dataloader_2d_create_v2(ffmodel.handle, input.handle, label.handle, full_input.handle, full_label.handle, num_samples)
    self._handle = ffi.gc(self.handle, ffc.flexflow_dataloader_2d_destroy)

  @property
  def num_samples(self):
    return ffc.flexflow_dataloader_2d_get_num_samples(self.handle)

  @num_samples.setter
  def num_samples(self, samples):
    ffc.flexflow_dataloader_2d_set_num_samples(self.handle, samples)

  def next_batch(self, ffmodel):
    ffc.flowflow_dataloader_2d_next_batch(self.handle, ffmodel.handle)

  def reset(self):
    ffc.flexflow_dataloader_2d_reset(self.handle)

# -----------------------------------------------------------------------
# Single DataLoader
# -----------------------------------------------------------------------

class SingleDataLoader(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, input, full_input, num_samples, data_type):
    assert type(ffmodel) is FFModel, "SingleDataLoader ffmodel is wrong"
    assert type(input) is Tensor, "SingleDataLoader input is wrong"
    if type(full_input) is Tensor:
      self.init_from_tensor(ffmodel, input, full_input, num_samples, data_type)
    else:
      self.init_from_ptr(ffmodel, input, full_input, num_samples, data_type)
    self._handle = ffi.gc(self.handle, ffc.flexflow_single_dataloader_destroy)
    
  def init_from_tensor(self, ffmodel, input, full_input, num_samples, data_type):
    assert type(full_input) is Tensor, "SingleDataLoader full_input is wrong"
    c_data_type = enum_to_int(DataType, data_type)
    self.handle = ffc.flexflow_single_dataloader_create(ffmodel.handle, input.handle, full_input.handle, num_samples, c_data_type)
    
  def init_from_ptr(self, ffmodel, input, full_input, num_samples, data_type):
    # assert type(full_input) is Tensor, "SingleDataLoader full_input is wrong"
    c_data_type = enum_to_int(DataType, data_type)
    self.handle = ffc.flexflow_single_dataloader_create2(ffmodel.handle, input.handle, full_input, num_samples, c_data_type)

  @property
  def num_samples(self):
    return ffc.flexflow_single_dataloader_get_num_samples(self.handle)

  @num_samples.setter
  def num_samples(self, samples):
    ffc.flexflow_single_dataloader_set_num_samples(self.handle, samples)

  def next_batch(self, ffmodel):
    """Ask the dataloder to load the next batch to the :attr:`batch_tensor`. 
             
    :returns:  None -- no returns.
    """
    ffc.flowflow_single_dataloader_next_batch(self.handle, ffmodel.handle)

  def reset(self):
    """Reset the current position of the dataloder to 0. 
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_single_dataloader_reset(self.handle)

class RegionNdarray(object):
  __slots__ = ['__array_interface__']
  def __init__(self, shape, data_type, base_ptr, strides, read_only):
    # See: https://docs.scipy.org/doc/numpy/reference/arrays.interface.html
    if (data_type == DataType.DT_FLOAT):
      field_type = "<f4"
    elif (data_type == DataType.DT_INT32):
      field_type = "<i4"
    else:
      assert 0, "unknown data type"
      field_type = "<f4"
    self.__array_interface__ = {
      'version': 3,
      'shape': shape,
      'typestr': field_type,
      'data': (base_ptr, read_only),
      'strides': strides,
    }
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



python/flexflow/core/flexflow_cffi.py [27:2113]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
assert 'FF_HOME' in os.environ
_flexflow_cxxheader_dir= os.path.join(os.environ['FF_HOME'], 'include')
_flexflow_cheader_file = os.path.join(os.path.join(os.environ['FF_HOME'], 'python'), 'flexflow_c.h')

_flexflow_cheader = subprocess.check_output(['gcc', '-I', _flexflow_cxxheader_dir, '-E', '-P', _flexflow_cheader_file]).decode('utf-8')
ffi = cffi.FFI()
ffi.cdef(_flexflow_cheader)
ffc = ffi.dlopen(None)

ff_tracing_id = 200

warnings.simplefilter('always', DeprecationWarning)

def get_c_name(name):
  if name is None:
    return ffi.NULL
  else:
    return ffi.new("char[]", name.encode('ascii'))

def get_datatype_size(datatype):
  if (datatype == DataType.DT_FLOAT):
    return 4
  elif (datatype == DataType.DT_DOUBLE):
    return 8
  elif (datatype == DataType.DT_INT32):
    return 4
  elif (datatype == DataType.DT_INT64):
    return 8
  else:
    assert 0, "unknow datatype" + str(datatype)
    return 0

# -----------------------------------------------------------------------
# Op
# -----------------------------------------------------------------------
class Op(object):
  __slots__ = ['handle', 'idx', 'name']
  def __init__(self, handle, idx=None, name=None):
    assert ffi.typeof(handle) == ffi.typeof('flexflow_op_t'), "Op handle is wrong"
    self.handle = handle
    self.idx = idx
    self.name = name

  def get_number_parameters(self):
    return ffc.flexflow_op_get_num_parameters(self.handle)

  def get_parameter_tensor_by_id(self, id):
    handle = ffc.flexflow_op_get_parameter_by_id(self.handle, id)
    return Parameter(handle)

  def get_number_inputs(self):
    return ffc.flexflow_op_get_num_inputs(self.handle)

  def get_input_tensor_by_id(self, id):
    handle = ffc.flexflow_op_get_input_by_id(self.handle, id)
    return Tensor(handle, False)

  def get_number_outputs(self):
    return ffc.flexflow_op_get_num_outputs(self.handle)

  def get_output_tensor_by_id(self, id):
    handle = ffc.flexflow_op_get_output_by_id(self.handle, id)
    return Tensor(handle, False)

  def init(self, model):
    ffc.flexflow_op_init(self.handle, model.handle)

  def forward(self, model):
    ffc.flexflow_op_forward(self.handle, model.handle)
    #return Tensor(handle)

  def _add_to_model(self, model):
    ffc.flexflow_op_add_to_model(self.handle, model.handle)

# -----------------------------------------------------------------------
# Exp
# -----------------------------------------------------------------------
class Exp(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Exp, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Add
# -----------------------------------------------------------------------
class Add(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Add, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Subtract
# -----------------------------------------------------------------------
class Subtract(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Subtract, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Multiply
# -----------------------------------------------------------------------
class Multiply(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Multiply, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Divide
# -----------------------------------------------------------------------
class Divide(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Divide, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Conv2D
# -----------------------------------------------------------------------
class Conv2D(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Conv2D, self).__init__(handle, idx, name)

  def get_weight_tensor(self):
    return self.get_parameter_tensor_by_id(0)

  def get_bias_tensor(self):
    return self.get_parameter_tensor_by_id(1)

  def get_input_tensor(self):
    return self.get_input_tensor_by_id(0)

  def get_output_tensor(self):
    return self.get_output_tensor_by_id(0)

# -----------------------------------------------------------------------
# Pool2D
# -----------------------------------------------------------------------
class Pool2D(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Pool2D, self).__init__(handle, idx, name)

  def get_input_tensor(self):
    return self.get_input_tensor_by_id(0)

  def get_output_tensor(self):
    return self.get_output_tensor_by_id(0)

# -----------------------------------------------------------------------
# Linear
# -----------------------------------------------------------------------
class Linear(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Linear, self).__init__(handle, idx, name)

  def get_weight_tensor(self):
    return self.get_parameter_tensor_by_id(0)

  def get_bias_tensor(self):
    return self.get_parameter_tensor_by_id(1)

  def get_input_tensor(self):
    return self.get_input_tensor_by_id(0)

  def get_output_tensor(self):
    return self.get_output_tensor_by_id(0)

# -----------------------------------------------------------------------
# Flat
# -----------------------------------------------------------------------
class Flat(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Flat, self).__init__(handle, idx, name)

  def get_input_tensor(self):
    return self.get_input_tensor_by_id(0)

  def get_output_tensor(self):
    return self.get_output_tensor_by_id(0)

# -----------------------------------------------------------------------
# Softmax
# -----------------------------------------------------------------------
class Softmax(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Softmax, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Embedding
# -----------------------------------------------------------------------
class Embedding(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Embedding, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Concat
# -----------------------------------------------------------------------
class Concat(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Concat, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# BatchNorm
# -----------------------------------------------------------------------
class BatchNorm(Op):
  def __init__(self, handle, idx=None, name=None):
    super(BatchNorm, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Dropout
# -----------------------------------------------------------------------
class Dropout(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Dropout, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# ScalarMultiply
# -----------------------------------------------------------------------
class ScalarMultiply(Op):
  def __init__(self, handle, idx=None, name=None):
    super(ScalarMultiply, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# ScalarAdd
# -----------------------------------------------------------------------
class ScalarAdd(Op):
  def __init__(self, handle, idx=None, name=None):
    super(ScalarAdd, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# ScalarSub
# -----------------------------------------------------------------------
class ScalarSub(Op):
  def __init__(self, handle, idx=None, name=None):
    super(ScalarSub, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# ScalarTrueDiv
# -----------------------------------------------------------------------
class ScalarTrueDiv(Op):
  def __init__(self, handle, idx=None, name=None):
    super(ScalarTrueDiv, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Relu
# -----------------------------------------------------------------------
class Relu(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Relu, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Gelu
# -----------------------------------------------------------------------
class Gelu(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Gelu, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Sigmod
# -----------------------------------------------------------------------
class Sigmoid(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Sigmoid, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Tanh
# -----------------------------------------------------------------------
class Tanh(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Tanh, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Elu
# -----------------------------------------------------------------------
class Elu(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Elu, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Batch_Norm
# -----------------------------------------------------------------------
class Batch_Norm(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Batch_Norm, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Batch_Matmul
# -----------------------------------------------------------------------
class Batch_Matmul(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Batch_Matmul, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Split
# -----------------------------------------------------------------------
class Split(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Split, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Reshape
# -----------------------------------------------------------------------
class Reshape(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Reshape, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Identity
# -----------------------------------------------------------------------
class Identity(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Identity, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Transpose
# -----------------------------------------------------------------------
class Transpose(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Transpose, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# Reverse
# -----------------------------------------------------------------------
class Reverse(Op):
  def __init__(self, handle, idx=None, name=None):
    super(Reverse, self).__init__(handle, idx, name)
    
# -----------------------------------------------------------------------
# MultiHeadAttention
# -----------------------------------------------------------------------
class MultiHeadAttention(Op):
  def __init__(self, handle, idx=None, name=None):
    super(MultiHeadAttention, self).__init__(handle, idx, name)

# -----------------------------------------------------------------------
# flexflow_op_t handle to Op
# -----------------------------------------------------------------------
def convert_op_handle_to_op(op_type, handle, idx=None, name=None):
  if op_type == OpType.CONV2D:
    return Conv2D(handle, idx, name)
  elif op_type == OpType.POOL2D:
    return Pool2D(handle, idx, name)
  elif op_type == OpType.LINEAR:
    return Linear(handle, idx, name)
  elif op_type == OpType.EMBEDDING:
    return Embedding(handle, idx, name)
  elif op_type == OpType.FLAT:
    return Flat(handle, idx, name)
  elif op_type == OpType.CONCAT:
    return Concat(handle, idx, name)
  elif op_type == OpType.SOFTMAX:
    return Softmax(handle, idx, name)
  elif op_type == OpType.EXP:
    return Exp(handle, idx, name)
  elif op_type == OpType.ADD:
    return Add(handle, idx, name)
  elif op_type == OpType.SUBTRACT:
    return Subtract(handle, idx, name)
  elif op_type == OpType.MULTIPLY:
    return Multiply(handle, idx, name)
  elif op_type == OpType.DIVIDE:
    return Divide(handle, idx, name)
  elif op_type == OpType.MSELOSS:
    return MSELoss(handle, idx, name)
  elif op_type == OpType.SCALAR_MULTIPLY:
    return ScalarMultiply(handle, idx, name)
  elif op_type == OpType.SCALAR_ADD:
      return ScalarAdd(handle, idx, name)
  elif op_type == OpType.SCALAR_SUB:
      return ScalarSub(handle, idx, name)
  elif op_type == OpType.SCALAR_FLOORDIV:
      return ScalarFloorDiv(handle, idx, name)
  elif op_type == OpType.SCALAR_TRUEDIV:
      return ScalarTrueDiv(handle, idx, name)
  elif op_type == OpType.GELU:
    return Gelu(handle, idx, name)
  elif op_type == OpType.RELU:
    return Relu(handle, idx, name)
  elif op_type == OpType.SIGMOID:
    return Sigmoid(handle, idx, name)
  elif op_type == OpType.TANH:
    return Tanh(handle, idx, name)
  elif op_type == OpType.ELU:
    return Elu(handle, idx, name)
  elif op_type == OpType.DROPOUT:
    return Dropout(handle, idx, name)
  elif op_type == OpType.BATCH_NORM:
    return Batch_Norm(handle, idx, name)
  elif op_type == OpType.BATCH_MATMUL:
    return Batch_Matmul(handle, idx, name)
  elif op_type == OpType.SPLIT:
    return Split(handle, idx, name)
  elif op_type == OpType.RESHAPE:
    return Reshape(handle, idx, name)
  elif op_type == OpType.IDENTITY:
    return Identity(handle,idx,name)
  elif op_type == OpType.TRANSPOSE:
    return Transpose(handle, idx, name)
  elif op_type == OpType.REVERSE:
    return Reverse(handle, idx, name)
  elif op_type == OpType.MULTIHEAD_ATTENTION:
    return Reverse(handle, idx, name)
  else:
    assert 0, "unknow layer type {}".format(op_type)
    return None

# -----------------------------------------------------------------------
# FFConfig
# -----------------------------------------------------------------------

class FFConfig(object):
  __slots__ = ['handle', '_handle']
  def __init__(self):
    self.handle = ffc.flexflow_config_create()
    self._handle = ffi.gc(self.handle, ffc.flexflow_config_destroy)

  def parse_args(self):
    ffc.flexflow_config_parse_args_default(self.handle)

  @property
  def batch_size(self):
    return ffc.flexflow_config_get_batch_size(self.handle)

  @property
  def workers_per_node(self):
    return ffc.flexflow_config_get_workers_per_node(self.handle)

  @property
  def num_nodes(self):
    return ffc.flexflow_config_get_num_nodes(self.handle)

  @property
  def epochs(self):
    return ffc.flexflow_config_get_epochs(self.handle)

  def get_current_time(self):
    return ffc.flexflow_get_current_time(self.handle)

  def begin_trace(self, trace_id):
    ffc.flexflow_begin_trace(self.handle, trace_id)

  def end_trace(self, trace_id):
    ffc.flexflow_end_trace(self.handle, trace_id)

# -----------------------------------------------------------------------
# Tensor
# -----------------------------------------------------------------------

class Tensor(object):
  __slots__ = ['p_handle', 'handle', '_handle', 'num_dims', 'dims', 'data_type', 'owner_op', 'mapped']
  def __init__(self, handle, deallocate=True, owner_op_type=None, p_handle=None):
    if handle == None and ffi.typeof(p_handle) == ffi.typeof('flexflow_tensor_t*'):
      self.p_handle = p_handle
      self.handle = self.p_handle[0]
    elif handle != None and ffi.typeof(handle) == ffi.typeof('flexflow_tensor_t'):
      self.p_handle = 0
      self.handle = handle
    elif handle != None and ffi.typeof(handle) == ffi.typeof('flexflow_parameter_t'):
      self.p_handle = ffi.new('flexflow_tensor_t *')
      self.p_handle.impl = handle.impl
      self.handle = self.p_handle[0]
    else:
      assert 0, "Tensor handle is wrong"
    self.num_dims = 0
    self.dims = 0
    self.mapped = False
    self.__get_dims()
    self.__get_data_type()
    if (deallocate == True):
      self._handle = ffi.gc(self.handle, ffc.flexflow_tensor_destroy)
    if (self.is_mapped() == True):
      self.mapped = True

    if owner_op_type != None:
      self.__get_owner_op(owner_op_type)
      assert self.owner_op != None

  def inline_map(self, ffconfig):
    assert self.mapped == False, "Tensor is already mapped."
    ffc.flexflow_tensor_inline_map(self.handle, ffconfig.handle);
    self.mapped = True
    assert self.num_dims > 0, "check dims"

  def inline_unmap(self, ffconfig):
    assert self.mapped == True, "Tensor is not inline mapped."
    ffc.flexflow_tensor_inline_unmap(self.handle, ffconfig.handle);
    self.mapped = False

  def get_array(self, ffconfig, data_type):
    assert self.mapped == True, "Tensor is not mapped."
    raw_ptr = self.__get_raw_ptr(ffconfig, data_type)
    raw_ptr_int = int(ffi.cast("uintptr_t", raw_ptr))
    fflogger.debug("raw_ptr: %s, %d" %( str(raw_ptr), raw_ptr_int))
    strides = None
    if (self.num_dims >= 1 or self.num_dims <= 4):
      shape = self.dims
    else:
      assert 0, "unknow num_dims"
    initializer = RegionNdarray(shape, data_type, raw_ptr_int, strides, False)
    array = np.asarray(initializer)
    return array

  def get_flat_array(self, ffconfig, data_type):
    assert self.mapped == True, "Tensor is not mapped."
    raw_ptr = self.__get_raw_ptr(ffconfig, data_type)
    raw_ptr_int = int(ffi.cast("uintptr_t", raw_ptr))
    fflogger.debug("raw_ptr: %s, %d" %( str(raw_ptr), raw_ptr_int))
    strides = None
    if (self.num_dims >= 1 or self.num_dims <= 4):
      shape_prod = np.prod(self.dims)
      shape = (shape_prod,)
    else:
      assert 0, "unknown num_dims"
    initializer = RegionNdarray(shape, data_type, raw_ptr_int, strides, False)
    array = np.asarray(initializer)
    return array

  def attach_numpy_array(self, ffconfig, np_array):
    assert np_array.__array_interface__['strides'] == None, "numpy array strides is not None"
    np_shape = np_array.shape
    num_dims = len(np_shape)
    assert num_dims == self.num_dims, "please check dims (%d == %d)" %(num_dims, self.num_dims)
    for i in range(0, num_dims):
      assert np_shape[i] == self.dims[i], "please check shape dim %d (%d == %d)" %(i, np_shape[i], self.dims[i])
    np_raw_ptr = np_array.__array_interface__['data']
    raw_ptr = ffi.cast("void*", np_raw_ptr[0])
    fflogger.debug("attach numpy array: %s, %s, %s" %( str(np_raw_ptr), str(raw_ptr), hex(np_raw_ptr[0])))
    self.__attach_raw_ptr(ffconfig, raw_ptr)

  def detach_numpy_array(self, ffconfig):
    self.__detach_raw_ptr(ffconfig)

  def is_mapped(self):
    return ffc.flexflow_tensor_is_mapped(self.handle)
    
  def set_tensor(self, ffmodel, np_array, comm_type):
    assert np_array.__array_interface__['strides'] == None, "Parameter set_weights, numpy array strides is not None"
    np_shape = np_array.shape
    num_dims = len(np_shape)
    assert num_dims == self.num_dims, "please check dims (%d == %d)" %(num_dims, self.num_dims)
    for i in range(0, num_dims):
      assert np_shape[i] == self.dims[i], "please check shape dim %d (%d == %d)" %(i, np_shape[i], self.dims[i])
    c_dims = ffi.new("int[]", self.dims)
    np_raw_ptr = np_array.__array_interface__['data']
    c_comm_type = enum_to_int(ParameterSyncType, comm_type)
    if np_array.dtype == np.float32:
      assert self.data_type == DataType.DT_FLOAT, "Wrong datatype"
      raw_ptr = ffi.cast("float*", np_raw_ptr[0])
      ret_val = ffc.flexflow_tensor_set_tensor_float(self.handle, ffmodel.handle, num_dims, c_dims, raw_ptr, c_comm_type)
    elif np_array.dtype == np.int32:
      assert self.data_type == DataType.DT_INT32, "Wrong datatype"
      raw_ptr = ffi.cast("int*", np_raw_ptr[0])
      ret_val = ffc.flexflow_tensor_set_tensor_int(self.handle, ffmodel.handle, num_dims, c_dims, raw_ptr, c_comm_type)
    else:
      assert 0, "Unsupported datatype"
    fflogger.debug("set tensor raw_ptr: %s, %s, %s, %s" %( str(raw_ptr), str(np_raw_ptr[0]), hex(np_raw_ptr[0]), str(np_shape)))
    assert ret_val == True, ret_val
    
  def get_tensor(self, ffmodel, comm_type):
    shape = self.dims
    if self.data_type == DataType.DT_FLOAT:
      np_array = np.empty(shape, dtype=np.float32)
    elif self.data_type == DataType.DT_INT32:
      np_array = np.empty(shape, dtype=np.int32)
    else:
      assert 0, "Unsupported datatype"
    np_raw_ptr = np_array.__array_interface__['data']
    c_comm_type = enum_to_int(ParameterSyncType, comm_type)
    if np_array.dtype == np.float32:
      raw_ptr = ffi.cast("float*", np_raw_ptr[0])
      ret_val = ffc.flexflow_tensor_get_tensor_float(self.handle, ffmodel.handle, raw_ptr, c_comm_type)
    elif np_array.dtype == np.int32:
      raw_ptr = ffi.cast("int*", np_raw_ptr[0])
      ret_val = ffc.flexflow_tensor_get_tensor_int(self.handle, ffmodel.handle, raw_ptr, c_comm_type)
    fflogger.debug("get weights raw_ptr: %s, %s, %s, %s" %( str(raw_ptr), str(np_raw_ptr[0]), hex(np_raw_ptr[0]), str(shape)))
    assert ret_val == True
    return np_array

  def __get_raw_ptr(self, ffconfig, data_type):
    assert data_type == self.data_type, "Tensor check data type"
    if (data_type == DataType.DT_FLOAT):
      return ffc.flexflow_tensor_get_raw_ptr_float(self.handle, ffconfig.handle)
    elif (data_type == DataType.DT_INT32):
      return ffc.flexflow_tensor_get_raw_ptr_int32(self.handle, ffconfig.handle)
    else:
      assert 0, "unknown data type"

  def __get_dims(self):
    self.num_dims = ffc.flexflow_tensor_get_num_dims(self.handle)
    d = ffc.flexflow_tensor_get_dims(self.handle)
    #fflogger.debug(d[0], d[1], d[2], d[3])
    if (self.num_dims == 1):
      self.dims = (d[0],)
    elif (self.num_dims == 2):
      self.dims = (d[1], d[0])
    elif (self.num_dims == 3):
      self.dims = (d[2], d[1], d[0])
    elif (self.num_dims == 4):
      self.dims = (d[3], d[2], d[1], d[0])
    elif (self.num_dims == 5):
      self.dims = (d[4], d[3], d[2], d[1], d[0])
    else:
      assert 0, "unknown num_dims"

  def __get_data_type(self):
    dtype = ffc.flexflow_tensor_get_data_type(self.handle)
    if (dtype == 40):
      self.data_type = DataType.DT_FLOAT
    elif (dtype == 41):
      self.data_type = DataType.DT_DOUBLE
    elif (dtype == 42):
      self.data_type = DataType.DT_INT32
    elif (dtype == 43):
      self.data_type = DataType.DT_INT64
    elif (dtype == 44):
      self.data_type = DataType.DT_BOOLEAN
    else:
      assert 0, "unknown data type"

  def __get_owner_op(self, op_type):
    op_handle = ffc.flexflow_tensor_get_owner_op(self.handle)
    if op_handle.impl == ffi.NULL:
      self.owner_op = None
    else:
      self.owner_op = convert_op_handle_to_op(op_type, op_handle)

  def __attach_raw_ptr(self, ffconfig, raw_ptr, column_major=True):
    assert self.mapped == False, "Tensor is already mapped."
    ffc.flexflow_tensor_attach_raw_ptr(self.handle, ffconfig.handle, raw_ptr, column_major)
    self.mapped = True

  def __detach_raw_ptr(self, ffconfig):
    assert self.mapped == True, "Tensor is not mapped."
    ffc.flexflow_tensor_detach_raw_ptr(self.handle, ffconfig.handle)
    self.mapped = False

# -----------------------------------------------------------------------
# Parameter
# -----------------------------------------------------------------------

class Parameter(Tensor):
  __slots__ = ['parameter_handle']
  def __init__(self, handle):
    assert ffi.typeof(handle) == ffi.typeof('flexflow_parameter_t'), "Parameter handle is wrong"
    self.parameter_handle = handle
    super(Parameter, self).__init__(self.parameter_handle, deallocate=False)

  def set_weights(self, ffmodel, np_array):
    assert np_array.__array_interface__['strides'] == None, "Parameter set_weights, numpy array strides is not None"
    np_shape = np_array.shape
    num_dims = len(np_shape)
    assert num_dims == self.num_dims, "please check dims (%d == %d)" %(num_dims, self.num_dims)
    for i in range(0, num_dims):
      assert np_shape[i] == self.dims[i], "please check shape dim %d (%d == %d)" %(i, np_shape[i], self.dims[i])
    c_dims = ffi.new("int[]", self.dims)
    np_raw_ptr = np_array.__array_interface__['data']
    raw_ptr = ffi.cast("float*", np_raw_ptr[0])
    fflogger.debug("set weights raw_ptr: %s, %s, %s, %s" %( str(raw_ptr), str(np_raw_ptr[0]), hex(np_raw_ptr[0]), str(np_shape)))
    ret_val = ffc.flexflow_parameter_set_weights_float(self.parameter_handle, ffmodel.handle, num_dims, c_dims, raw_ptr)
    assert ret_val == True, ret_val

  def get_weights(self, ffmodel):
    shape = self.dims
    np_array = np.empty(shape, dtype=np.float32)
    np_raw_ptr = np_array.__array_interface__['data']
    raw_ptr = ffi.cast("float*", np_raw_ptr[0])
    fflogger.debug("get weights raw_ptr: %s, %s, %s, %s" %( str(raw_ptr), str(np_raw_ptr[0]), hex(np_raw_ptr[0]), str(shape)))
    ret_val = ffc.flexflow_parameter_get_weights_float(self.parameter_handle, ffmodel.handle, raw_ptr)
    assert ret_val == True
    return np_array

# -----------------------------------------------------------------------
# FFModel
# -----------------------------------------------------------------------

class FFModel(object):
  """
  """
  __slots__ = ['handle', '_handle', '_layers', '_nb_layers', '_ffconfig', '_tracing_id']
  def __init__(self, ffconfig):
    """Constructor of FFModel.
           
    :param ffconfig: configurations of FlexFlow and the created model.
    :type ffconfig: FFConfig

    :returns:  FFModel -- the model.
    """
    self.handle = ffc.flexflow_model_create(ffconfig.handle)
    self._handle = ffi.gc(self.handle, ffc.flexflow_model_destroy)
    self._layers = dict()
    self._nb_layers = 0
    self._ffconfig = ffconfig
    global ff_tracing_id
    self._tracing_id = ff_tracing_id
    ff_tracing_id += 1

  def get_layers(self):
    return self._layers

  def add_layer(self, op_type, name):
    layer_id = self._nb_layers
    op_handle = ffc.flexflow_model_get_layer_by_id(self.handle, layer_id)
    self._layers[self._nb_layers] = convert_op_handle_to_op(op_type, op_handle, idx=layer_id, name=name)
    self._nb_layers += 1

  def create_tensor(self, dims, data_type, create_grad=True):
    """Instantiate a FlexFlow tensor.
             
    :param x: a shape tuple/list (integers), including the batch size.
    :type x: list of int
             
    :param data_type: the datatype of the created tensor. Options are
      DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_BOOLEAN.
    :type data_type: DataType
    
    :param create_grad: weather the tensor creates a gradients vector. 
      If you don't specify anything, a gradients vector is used.
    :type create_grad: bool

    :returns:  Tensor -- the output tensor.
    """
    c_dims = ffi.new("int[]", dims)
    c_data_type = enum_to_int(DataType, data_type)
    num_dims = len(dims)
    handle = ffc.flexflow_tensor_create(self.handle, num_dims, c_dims, c_data_type, create_grad);
    return Tensor(handle)

  def create_constant(self, dims, value, data_type):
    c_dims = ffi.new("int[]", dims)
    c_data_type = enum_to_int(DataType, data_type)
    num_dims = len(dims)
    handle = ffc.flexflow_constant_create(self.handle, num_dims, c_dims, value, c_data_type);
    return Tensor(handle)

  def exp(self, x, name=None):
    """Exponential activation function.
             
    :param x: the input Tensor.
    :type x: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_exp(self.handle, x.handle, c_name)
    self.add_layer(OpType.EXP, name)
    return Tensor(handle, owner_op_type=OpType.EXP)

  def add(self, x, y, inplace_a=False, name=None):
    """Layer that adds two input Tensors, :attr:`output = x + y`.
             
    :param x: the first input Tensor.
    :type x: Tensor
    
    :param y: the second input Tensor.
    :type y: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_add(self.handle, x.handle, y.handle, inplace_a, c_name)
    self.add_layer(OpType.ADD, name)
    return Tensor(handle, owner_op_type=OpType.ADD)

  def subtract(self, x, y, inplace_a=False, name=None):
    """Layer that subtracts two input Tensors, :attr:`output = x * y`.
             
    :param x: the first input Tensor.
    :type x: Tensor
    
    :param y: the second input Tensor.
    :type y: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_subtract(self.handle, x.handle, y.handle, inplace_a, c_name)
    self.add_layer(OpType.SUBTRACT, name)
    return Tensor(handle, owner_op_type=OpType.SUBTRACT)

  def multiply(self, x, y, inplace_a=False, name=None):
    """Layer that multiplies (element-wise) two input Tensors, :attr:`output = x * y`.
             
    :param x: the first input Tensor.
    :type x: Tensor
    
    :param y: the second input Tensor.
    :type y: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_multiply(self.handle, x.handle, y.handle, inplace_a, c_name)
    self.add_layer(OpType.MULTIPLY, name)
    return Tensor(handle, owner_op_type=OpType.MULTIPLY)

  def divide(self, x, y, inplace_a=False, name=None):
    """Layer that divides (element-wise) two input Tensors, :attr:`output = x / y`.
             
    :param x: the first input Tensor.
    :type x: Tensor
    
    :param y: the second input Tensor.
    :type y: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_divide(self.handle, x.handle, y.handle, inplace_a, c_name)
    self.add_layer(OpType.DIVIDE, name)
    return Tensor(handle, owner_op_type=OpType.DIVIDE)

  def conv2d(self, input, out_channels, 
             kernel_h, kernel_w, 
             stride_h, stride_w, 
             padding_h, padding_w, 
             activation=ActiMode.AC_MODE_NONE, 
             groups=1, use_bias=True, shared_op=None, 
             kernel_initializer=None, bias_initializer=None, name=None):
    """This layer creates a 2D convolution kernel that is convolved with the layer :attr:`input` 
    to produce a tensor of :attr:`output`.
    
    The size of input tensor is :math:`(N, C_{in}, H, W)` and the size of output tensor 
    is :math:`(N, C_{out}, H_{out}, W_{out})`, which can be calculated by:
    
    .. math::
      C_{out} = out\_channels
    
    .. math::
      K_{H} = kernel\_h
             
    .. math::
      K_{W} = kernel\_w
             
    .. math::
      S_{H} = stride\_h
             
    .. math::
      S_{W} = stride\_w
             
    .. math::
      P_{H} = padding\_h
             
    .. math::
      P_{S} = padding\_s
                      
    .. math::
      H_{out} = (H - K_{H} + 2 * P_{H}) / S_{H} + 1 
             
    .. math::
      W_{out} = (W - K_{W} + 2 * P_{W}) / S_{W} + 1      
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param out\_channels: the dimensionality of the output space (i.e. the number of output filters in the convolution).
    :type out\_channels: int

    :param kernel_h: the height of the 2D convolution window: :math:`K_{H}`.
    :type kernel_h: int

    :param kernel_w: the width of the 2D convolution window: :math:`K_{W}`.
    :type kernel_w: int

    :param stride_h: the stride of the convolution along the height: :math:`S_{H}`.
    :type stride_h: int

    :param stride_w: the stride of the convolution along the width: :math:`S_{W}`.
    :type stride_w: int

    :param padding_h: the amount of implicit zero-paddings along the height: :math:`P_{H}`.
    :type padding_h: int

    :param padding_w: the amount of implicit zero-paddings along the width: :math:`P_{W}`.
    :type padding_w: int   

    :param activation: Activation function to use. Default is ActiMode.AC_MODE_NONE.
    :type activation: ActiMode   
 
    :param groups: the number of groups in this convolution
    :type groups: int   
            
    :param use_bias: whether the layer uses a bias vector. Default is True.
    :type use_bias: bool  

    :param shared_op: the layer whose parameters are shared with. Default is None.
    :type shared_op: Op  
             
    :param kernel_initializer: Initializer for the kernel weights matrix. If it is set to None, the GlorotUniformInitializer is applied.
    :type kernel_initializer: Initializer

    :param bias_initializer: Initializer for the bias vector. If it is set to None, the ZeroInitializer is applied.
    :type bias_initializer: Initializer
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    shared_op_handle = self.__get_op_handle(shared_op)
    c_activation = enum_to_int(ActiMode, activation)
    kernel_init_handle = self.__get_initializer_handle(kernel_initializer)
    bias_init_handle = self.__get_initializer_handle(bias_initializer)
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_conv2d(self.handle, input.handle, out_channels, kernel_h, kernel_w, stride_h, stride_w, padding_h, padding_w, c_activation, groups, use_bias, shared_op_handle, kernel_init_handle, bias_init_handle, c_name)
    self.add_layer(OpType.CONV2D, name)
    return Tensor(handle, owner_op_type=OpType.CONV2D)

  def embedding(self, input, num_entires, out_dim, 
                aggr, shared_op=None, kernel_initializer=None, name=None):
    """Layer that turns positive integers into dense vectors of fixed size
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param num_entires: size of the vocabulary, i.e. maximum integer index + 1
    :type num_entires: int
                
    :param out_dim: dimension of the dense embedding.
    :type out_dim: int
                
    :param aggr: aggregation mode. Options are AGGR_MODE_NONE, AGGR_MODE_SUM and AGGR_MODE_AVG.
    :type aggr: AggrMode
                
    :param shared_op: the layer whose parameters are shared with. Default is None.
    :type shared_op: Op  
             
    :param kernel_initializer: Initializer for the kernel weights matrix. If it is set to None, the GlorotUniformInitializer is applied.
    :type kernel_initializer: Initializer
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    shared_op_handle = self.__get_op_handle(shared_op)
    c_aggr = enum_to_int(AggrMode, aggr)
    assert (type(kernel_initializer) is GlorotUniformInitializer) or (type(kernel_initializer) is ZeroInitializer) or (type(kernel_initializer) is UniformInitializer) or (type(kernel_initializer) is NormInitializer), "unknow initializer type"
    handle = ffc.flexflow_model_add_embedding(self.handle,  input.handle, num_entires, out_dim, c_aggr, shared_op_handle, kernel_initializer.handle, c_name)
    self.add_layer(OpType.EMBEDDING, name)
    return Tensor(handle, owner_op_type=OpType.EMBEDDING)

  def pool2d(self, input, kernel_h, kernel_w, 
             stride_h, stride_w, 
             padding_h, padding_w, 
             pool_type=PoolType.POOL_MAX, 
             activation=ActiMode.AC_MODE_NONE, name=None):
    """Pooling operation for 2D spatial data.
    
    The size of input tensor is :math:`(N, C_{in}, H, W)` and the size of output tensor 
    is :math:`(N, C_{out}, H_{out}, W_{out})`, which can be calculated by:
    
    .. math::
      C_{out} = out\_channels
    
    .. math::
      K_{H} = kernel\_h
             
    .. math::
      K_{W} = kernel\_w
             
    .. math::
      S_{H} = stride\_h
             
    .. math::
      S_{W} = stride\_w
             
    .. math::
      P_{H} = padding\_h
             
    .. math::
      P_{S} = padding\_s
                      
    .. math::
      H_{out} = (H - K_{H} + 2 * P_{H}) / S_{H} + 1 
             
    .. math::
      W_{out} = (W - K_{W} + 2 * P_{W}) / S_{W} + 1      
             
    :param input: the input Tensor.
    :type input: Tensor

    :param kernel_h: the height of the 2D pooling window: :math:`K_{H}`.
    :type kernel_h: int

    :param kernel_w: the width of the 2D pooling window: :math:`K_{W}`.
    :type kernel_w: int

    :param stride_h: the stride of the pooling along the height: :math:`S_{H}`.
    :type stride_h: int

    :param stride_w: the stride of the pooling along the width: :math:`S_{W}`.
    :type stride_w: int

    :param padding_h: the amount of implicit zero-paddings along the height: :math:`P_{H}`.
    :type padding_h: int

    :param padding_w: the amount of implicit zero-paddings along the width: :math:`P_{W}`.
    :type padding_w: int

    :param activation: Tyoe of pooling function to use. If you don't specify anything, PoolType.POOL_MAX is applied.
    :type activation: PoolType

    :param activation: Activation function to use. Default is ActiMode.AC_MODE_NONE.
    :type activation: ActiMode
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    c_pool_type = enum_to_int(PoolType, pool_type)
    c_activation = enum_to_int(ActiMode, activation)
    handle = ffc.flexflow_model_add_pool2d(self.handle, input.handle, kernel_h, kernel_w, stride_h, stride_w, padding_h, padding_w, c_pool_type, c_activation, c_name)
    self.add_layer(OpType.POOL2D, name)
    return Tensor(handle, owner_op_type=OpType.POOL2D)

  def batch_norm(self, input, relu=True, name=None):
    """Layer that normalizes its inputs.

    Batch normalization applies a transformation that maintains the mean output close to 0 and the output standard deviation close to 1.
             
    :param input: the list of input Tensors.
    :type input: Tensor
    
    :param relu: whether a ReLU function is applied. Default is True.
    :type relu: bool
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_batch_norm(self.handle, input.handle, relu, c_name)
    self.add_layer(OpType.BATCH_NORM, name)
    return Tensor(handle, owner_op_type=OpType.BATCH_NORM)

  def batch_matmul(self, A, B, a_seq_length_dim=None, b_seq_length_dim=None, name=None):
    """Layer that applied batched matrix multiplication onto two input Tensors, :attr:`output = x * y`.
             
    :param A: the first input Tensor.
    :type A: Tensor
    
    :param B: the second input Tensor.
    :type B: Tensor

    :param a_seq_length_dim: an int when set indicating the a_seq_length_dim dimention of A is a sequence_length dimension
    :type a_seq_length_dim: int

    :param b_seq_length_dim: an int when set indicating the b_seq_length_dim dimention of B is a sequence_length dimension
    :type b_seq_length_dim: int
            
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    if a_seq_length_dim is None:
      a_seq_length_dim = -1
    if b_seq_length_dim is None:
      b_seq_length_dim = -1
    handle = ffc.flexflow_model_add_batch_matmul(self.handle, A.handle, B.handle, a_seq_length_dim, b_seq_length_dim)
    self.add_layer(OpType.BATCH_MATMUL, name)
    return Tensor(handle, owner_op_type=OpType.BATCH_MATMUL)

  def dense(self, input, out_dim, 
            activation=ActiMode.AC_MODE_NONE, 
            use_bias=True, shared_op=None,
            kernel_initializer=None, bias_initializer=None, name=None):
    """Dense implements the operation: :attr:`output = activation(dot(input, kernel) + bias)` where 
    :attr:`activation` is the element-wise activation function passed as the activation argument, 
    :attr:`kernel` is a weights matrix created by the layer, and 
    :attr:`bias` is a bias vector created by the layer (only applicable if :attr:`use_bias` is True).
    
    The size of input tensor is :math:`(N, C_{in})` and the size of output tensor 
    is :math:`(N, C_{out})`, where :math:`C_{out} = out\_dim`   
             
    :param input: the input Tensor.
    :type input: Tensor
            
    :param out\_dim: dimensionality of the output space.
    :type out\_dim: int

    :param activation: Activation function to use. Default is ActiMode.AC_MODE_NONE.
    :type activation: ActiMode   
             
    :param use_bias: whether the layer uses a bias vector. Default is True.
    :type use_bias: bool  

    :param shared_op: the layer whose parameters are shared with. Default is None.
    :type shared_op: Op  
             
    :param kernel_initializer: Initializer for the kernel weights matrix. If it is set to None, the GlorotUniformInitializer is applied.
    :type kernel_initializer: Initializer

    :param bias_initializer: Initializer for the bias vector. If it is set to None, the ZeroInitializer is applied.
    :type bias_initializer: Initializer
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    shared_op_handle = self.__get_op_handle(shared_op)
    c_activation = enum_to_int(ActiMode, activation)
    kernel_init_handle = self.__get_initializer_handle(kernel_initializer)
    bias_init_handle = self.__get_initializer_handle(bias_initializer)
    handle = ffc.flexflow_model_add_dense(self.handle,  input.handle, out_dim, c_activation, use_bias, shared_op_handle, kernel_init_handle, bias_init_handle, c_name)
    self.add_layer(OpType.LINEAR, name)
    return Tensor(handle, owner_op_type=OpType.LINEAR)

  def concat(self, tensors, axis, name=None):
    """Layer that concatenates a list of inputs.

    It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single tensor that is the concatenation of all inputs.
             
    :param input: the list of input Tensors.
    :type input: List of Tensors
    
    :param axis: the dimension along which to concatenate.
    :type axis: int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    assert type(tensors) is list, "tensors should be a list"
    tensor_handle_list = []
    n = len(tensors)
    assert n <= 256, "Please increase MAX_NUM_INPUTS"
    for tensor in tensors:
      tensor_handle_list.append(tensor.handle)
    c_tensor_handle_list = ffi.new("flexflow_tensor_t[]", tensor_handle_list)
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_concat(self.handle, n, c_tensor_handle_list, axis, c_name)
    self.add_layer(OpType.CONCAT, name)
    return Tensor(handle, owner_op_type=OpType.CONCAT)

  def split(self, input, sizes, axis, name=None):
    """Layer that splits a :attr:`input` tensor into a list of tensors.
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param sizes: either an int indicating the number of splits along axis or a Python list containing the sizes of each output tensor along axis. If a scalar, then it must evenly divide :attr:`input.dims[axis]`; otherwise the sum of sizes along the split axis must match that of the :attr:`input`. 
    :type sizes: int or list of int
    
    :param axis: the dimension along which to split.
    :type axis: int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  list of Tensors -- the output tensors.
    """
    if type(sizes) is list:
      split = sizes
    else:
      assert input.dims[axis] % sizes == 0, "Split dimension is not divisible"
      split = [input.dims[axis] // sizes for i in range(sizes)]
    n = len(split)
    assert n <= 256, "Please increase MAX_NUM_OUTPUTS"
    c_split = ffi.new("int[]", split)
    c_outputs_handle_list = ffi.new("flexflow_tensor_t[256]")
    c_name = get_c_name(name)
    ffc.flexflow_model_add_split(self.handle, input.handle, n, c_outputs_handle_list, c_split, axis, c_name)
    output_tensor_list = []
    for i in range(n):
      tensor_p_handle = ffi.new("flexflow_tensor_t*")
      tensor_p_handle.impl = c_outputs_handle_list[i].impl
      output_tensor_list.append(Tensor(None, owner_op_type=OpType.SPLIT, p_handle=tensor_p_handle))
    self.add_layer(OpType.SPLIT, name)
    del c_outputs_handle_list
    return output_tensor_list

  def flat(self, input, name=None):
    """Flattens the input. Does not affect the batch size.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_flat(self.handle, input.handle, c_name)
    self.add_layer(OpType.FLAT, name)
    return Tensor(handle, owner_op_type=OpType.FLAT)

  def softmax(self, input, axis=-1, name=None):
    """Softmax activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_softmax(self.handle, input.handle, axis, c_name)
    self.add_layer(OpType.SOFTMAX, name)
    return Tensor(handle, owner_op_type=OpType.SOFTMAX)

  def reshape(self, input, shape, name=None):
    """Layer that reshapes inputs into the given shape.
    
    Given a :attr:`input` tensor, this operation returns a output tensor that has the same values as tensor in the same order, 
    except with a new shape given by :attr:`shape`.
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param shape: A list defining the shape of the output tensor.
    :type shape: list of int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    c_shape = ffi.new("int[]", shape)
    handle = ffc.flexflow_model_add_reshape(self.handle, input.handle, len(shape), c_shape, c_name)
    self.add_layer(OpType.RESHAPE, name)
    return Tensor(handle, owner_op_type=OpType.RESHAPE)

  def transpose(self, input, perm, name=None):
    """Transposes the :attr:`input` tensor. Permutes the dimensions according to perm
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param perm: A permutation of the dimensions of a.
    :type perm: List of int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    c_perm = ffi.new("int[]", perm)
    handle = ffc.flexflow_model_add_transpose(self.handle, input.handle, len(perm), c_perm, c_name)
    self.add_layer(OpType.TRANSPOSE, name)
    return Tensor(handle, owner_op_type=OpType.TRANSPOSE)

  def reverse(self, input, axis, name=None):
    """Layer that reverses specific dimensions of a tensor.
    
    Given a :attr:`input` tensor, this operation reverses the dimension :attr:`axis`.
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param axis: the dimension to reverse.
    :type axis: int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_reverse(self.handle, input.handle, axis, c_name)
    self.add_layer(OpType.REVERSE, name)
    return Tensor(handle, owner_op_type=OpType.REVERSE)

  def scalar_multiply(self, input, scalar, inplace=True, name=None):
    """Scalar multiplication of a tensor by an scalar.
             
    :param input: the input Tensor.
    :type input: Tensor

    :param input: the scalar
    :type scalar: float
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_scalar_multiply(self.handle, input.handle, scalar, inplace, c_name)
    self.add_layer(OpType.SCALAR_MULTIPLY, name)
    return Tensor(handle, owner_op_type=OpType.SCALAR_MULTIPLY)

  def scalar_add(self, input, scalar, inplace=True, name=None):
    """Scalar addition of a scalar to each entry of a tensor.
             
    :param input: the input Tensor.
    :type input: Tensor

    :param input: the scalar
    :type scalar: float
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_scalar_add(self.handle, input.handle, scalar, inplace, c_name)
    self.add_layer(OpType.SCALAR_ADD, name)
    return Tensor(handle, owner_op_type=OpType.SCALAR_ADD)

  def scalar_sub(self, input, scalar, inplace=True, name=None):
    """Scalar subtraction of a scalar to each entry of a tensor.
             
    :param input: the input Tensor.
    :type input: Tensor

    :param input: the scalar
    :type scalar: float
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_scalar_sub(self.handle, input.handle, scalar, inplace, c_name)
    self.add_layer(OpType.SCALAR_SUB, name)
    return Tensor(handle, owner_op_type=OpType.SCALAR_SUB)

  def scalar_true_divide(self, input, scalar, inplace=True, name=None):
    """Scalar regular division of a tensor by an scalar.
             
    :param input: the input Tensor.
    :type input: Tensor

    :param input: the scalar
    :type scalar: float
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_scalar_truediv(self.handle, input.handle, scalar, inplace, c_name)
    self.add_layer(OpType.SCALAR_TRUEDIV, name)
    return Tensor(handle, owner_op_type=OpType.SCALAR_TRUEDIV)

  def gelu(self, input, inplace=True, name=None):
    """Gaussian Error Linear Unit activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_gelu(self.handle, input.handle, c_name)
    self.add_layer(OpType.GELU, name)
    return Tensor(handle, owner_op_type=OpType.GELU)
  
  def relu(self, input, inplace=True, name=None):
    """Rectified Linear Unit activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_relu(self.handle, input.handle, inplace, c_name)
    self.add_layer(OpType.RELU, name)
    return Tensor(handle, owner_op_type=OpType.RELU)

  def identity(self, input, name=None):
    """Identity function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_identity(self.handle, input.handle, c_name)
    self.add_layer(OpType.IDENTITY, name)
    return Tensor(handle, owner_op_type=OpType.IDENTITY)
  
  def sigmoid(self, input, name=None):
    """Sigmoid activation function, :math:`sigmoid(x) = 1 / (1 + exp(-x))`.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_sigmoid(self.handle, input.handle, c_name)
    self.add_layer(OpType.SIGMOID, name)
    return Tensor(handle, owner_op_type=OpType.SIGMOID)

  def tanh(self, input, name=None):
    """Hyperbolic tangent activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_tanh(self.handle, input.handle, c_name)
    self.add_layer(OpType.TANH, name)
    return Tensor(handle, owner_op_type=OpType.TANH)

  def elu(self, input, inplace=True, name=None):
    """Exponential Linear Unit. activation function.
             
    :param input: the input Tensor.
    :type input: Tensor
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_elu(self.handle, input.handle, inplace, c_name)
    self.add_layer(OpType.ELU, name)
    return Tensor(handle, owner_op_type=OpType.ELU)

  def dropout(self, input, rate, seed, name=None):
    """The Dropout layer randomly sets input units to 0 with 
    a frequency of :attr:`rate` at each step during training time, 
    which helps prevent overfitting. 
    Inputs not set to 0 are scaled up by 1/(1 - rate) such that the 
    sum over all inputs is unchanged.
             
    :param input: the input Tensor.
    :type input: Tensor
    
    :param rate: Fraction of the input units to drop.
    :type rate: float(0-1)
    
    :param seed: random seed.
    :type seed: int
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """
    c_name = get_c_name(name)
    handle = ffc.flexflow_model_add_dropout(self.handle, input.handle, rate, seed, c_name)
    self.add_layer(OpType.DROPOUT, name)
    return Tensor(handle, owner_op_type=OpType.DROPOUT)
    
  def multihead_attention(self, query, key, value, 
                          embed_dim, num_heads, 
                          kdim=0, vdim=0, dropout=0.0, 
                          bias=True, add_bias_kv=False, add_zero_attn=False, 
                          kernel_initializer=None, name=None):
    """Defines the MultiHead Attention operation as described in Attention Is All You Need 
    which takes in the tensors :attr:`query`, :attr:`key`, and :attr:`value`, 
    and returns the dot-product attention between them:.
             
    :param query: the query Tensor.
    :type query: Tensor
    
    :param key: the key Tensor.
    :type key: Tensor
                          
    :param value: the value Tensor.
    :type value: Tensor

    :param embed_dim: total dimension of the model
    :type embed_dim: int
                          
    :param num_heads: Number of attention heads.
    :type num_heads: int
                          
    :param kdim: total number of features in key. Default is 0
    :type kdim: int
                          
    :param vdim: total number of features in value. Default is 0
    :type vdim: int
                          
    :param dropout: a Dropout layer on attn_output_weights. Default is 0.0
    :type dropout: float(0-1)
                          
    :param bias: Whether the dense layers use bias vectors. Default is True.
    :type bias: bool
                          
    :param add_bias_kv: add bias to the key and value sequences at dim=0. Default is False.
    :type add_bias_kv: bool
                          
    :param add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. Default is False.
    :type add_zero_attn: bool
    
    :param kernel_initializer: Initializer for dense layer kernels. If it is set to None, the GlorotUniformInitializer is applied.
    :type kernel_initializer: Initializer
             
    :param name: the name of the layer. Default is None.
    :type name: string

    :returns:  Tensor -- the output tensor.
    """     
    c_name = get_c_name(name)                 
    kernel_init_handle = self.__get_initializer_handle(kernel_initializer)
    handle = ffc.flexflow_model_add_multihead_attention(self.handle, query.handle, key.handle, value.handle, embed_dim, num_heads, kdim, vdim, dropout, bias, add_bias_kv, add_zero_attn, kernel_init_handle, c_name)
    self.add_layer(OpType.MULTIHEAD_ATTENTION, name)
    return Tensor(handle, owner_op_type=OpType.MULTIHEAD_ATTENTION)

  def reset_metrics(self):
    """Reset performance metrics.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_reset_metrics(self.handle)

  def init_layers(self):
    """Initialize layers.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_init_layers(self.handle)

  def prefetch(self):
    ffc.flexflow_model_prefetch(self.handle)

  def forward(self, seq_length=None):
    """Forward propagation of all layers.
             
    :returns:  None -- no returns.
    """
    if seq_length is None:
      seq_length = -1
    ffc.flexflow_model_forward(self.handle, seq_length)

  #TODO: seperate compute_metrics from backward
  def backward(self, seq_length=None):
    """Backward propagation of all layers.
             
    :returns:  None -- no returns.
    """
    if seq_length is None:
      seq_length = -1
    ffc.flexflow_model_backward(self.handle, seq_length)

  def compute_metrics(self):
    """Compute performance metrics.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_compute_metrics(self.handle)

  def update(self):
    """Update weights and biases of all layers.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_update(self.handle)

  def compile(self, optimizer=None, loss_type=None, metrics=None, comp_mode=None):
    """Configure the model for trainting. FlexFlow uses lazy initialization,
    so the actual creating of all operations (including creating and partitioning
    of weight, bias and output tensors) happen during compile. 
             
    :param optimizer: optimizer instance.
    :type optimizer: Optimizer
    
    :param loss_type: Enum of LossType. 
      Options are LOSS_CATEGORICAL_CROSSENTROPY, LOSS_SPARSE_CATEGORICAL_CROSSENTROPY, 
      LOSS_MEAN_SQUARED_ERROR_AVG_REDUCE and LOSS_MEAN_SQUARED_ERROR_SUM_REDUCE.
    :type loss_type: LossType
    
    :param metrics: List of metrics to be evaluated by the model during training and testing. 
      Each of this is a Enum of MetricsType. Options are METRICS_ACCURACY, 
      METRICS_CATEGORICAL_CROSSENTROPY, METRICS_SPARSE_CATEGORICAL_CROSSENTROPY,
      METRICS_MEAN_SQUARED_ERROR, METRICS_ROOT_MEAN_SQUARED_ERROR, METRICS_MEAN_ABSOLUTE_ERROR
    :type metrics: MetricsType

    :param comp_mode: Enum of CompMode.
      Options are COMP_MODE_TRAINING, COMP_MODE_INFERENCE
    :type comp_mode: CompMode

    :returns:  None -- no returns.
    """
    self.optimizer = optimizer

    c_loss_type = enum_to_int(LossType, loss_type)
    metrics_int = []
    for metric in metrics:
      metrics_int.append(enum_to_int(MetricsType, metric))
    c_metrics = ffi.new("int[]", metrics_int)
    if comp_mode == None:
      comp_mode = CompMode.TRAINING
    c_comp_mode = enum_to_int(CompMode, comp_mode)
    ffc.flexflow_model_compile(self.handle, c_loss_type, c_metrics, len(metrics), c_comp_mode)

  def fit(self, x=None, y=None, batch_size=None, epochs=1):
    """Trains the model for a fixed number of epochs (iterations on a dataset).
             
    :param x: Input data. It can be a Dataloader instance or a list of Dataloader instances.
    :type x: Dataloader
    
    :param y: Target data (label). It can be a Dataloader instance or a list of Dataloader instances.
    :type y: Dataloader
    
    :param batch_size: Number of samples per gradient update. It must be identical with :attr:`-b`
      or :attr:`--batch-size` from the command line.
    :type batch_size: int
    
    :param epochs: Number of epochs to train the model. 
      An epoch is an iteration over the entire :attr:`x` and :attr:`y` data provided.
      The default value is 1.
    :type epochs: int
             
    :returns:  None -- no returns.
    """
    if (isinstance(x, list) == False):
      dataloaders = [x]
    else:
      dataloaders = x
    dataloaders.append(y)

    num_samples = y.num_samples
    batch_size = self._ffconfig.batch_size
    self._tracing_id += 1 # get a new tracing id
    for epoch in range(0,epochs):
      for d in dataloaders:
        d.reset()
      self.reset_metrics()
      iterations = num_samples / batch_size
      for iter in range(0, int(iterations)):
        for d in dataloaders:
          d.next_batch(self)
        self._ffconfig.begin_trace(self._tracing_id)
        self.forward()
        self.zero_gradients()
        self.backward()
        self.update()
        self._ffconfig.end_trace(self._tracing_id)
          
  def eval(self, x=None, y=None, batch_size=None):
    """Returns the loss value & metrics values for the model in test mode. 
             
    :param x: Input data. It can be a Dataloader instance or a list of Dataloader instances.
    :type x: Dataloader
    
    :param y: Target data (label). It can be a Dataloader instance or a list of Dataloader instances.
    :type y: Dataloader
    
    :param batch_size: Number of samples per gradient update. It must be identical with :attr:`-b`
      or :attr:`--batch-size` from the command line.
    :type batch_size: int
    
    :param epochs: Number of epochs to train the model. 
      An epoch is an iteration over the entire :attr:`x` and :attr:`y` data provided.
      The default value is 1.
    :type epochs: int
             
    :returns:  None -- no returns.
    """
    if (isinstance(x, list) == False):
      dataloaders = [x]
    else:
      dataloaders = x
    dataloaders.append(y)

    num_samples = y.num_samples
    batch_size = self._ffconfig.batch_size
    for d in dataloaders:
      d.reset()
    self.reset_metrics()
    iterations = num_samples / batch_size
    self._tracing_id += 1 # get a new tracing id
    for iter in range(0, int(iterations)):
      for d in dataloaders:
        d.next_batch(self)
      self._ffconfig.begin_trace(self._tracing_id)
      self.forward()
      self.compute_metrics()
      self._ffconfig.end_trace(self._tracing_id)

  def zero_gradients(self):
    """Empty the gradients of all layers.
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_model_zero_gradients(self.handle)

  def set_optimizer(self, optimizer):
    if isinstance(optimizer, SGDOptimizer) == True:
      ffc.flexflow_model_set_sgd_optimizer(self.handle, optimizer.handle)
    elif isinstance(optimizer, AdamOptimizer) == True:
      ffc.flexflow_model_set_adam_optimizer(self.handle, optimizer.handle)
    elif optimizer == None:
      pass
    else:
      assert 0, "[Model]: unknown optimizer"

  optimizer = property(fset=set_optimizer)

  def print_layers(self, id=-1):
    ffc.flexflow_model_print_layers(self.handle, id)

  def get_layer_by_id(self, layer_id):
    return self._layers[layer_id]

  def get_layer_by_name(self, layer_name):
    for layer_id in self._layers:
      layer = self._layers[layer_id]
      if layer.name == layer_name:
        return layer
    assert 0, "Can not find the layer with the name"
    return None

  def get_tensor_by_id(self, id):
    handle = ffc.flexflow_model_get_parameter_by_id(self.handle, id)
    return Parameter(handle)

  @property
  def label_tensor(self):
    handle = ffc.flexflow_model_get_label_tensor(self.handle)
    return Tensor(handle, deallocate=False)

  def get_perf_metrics(self):
    handle = ffc.flexflow_model_get_perf_metrics(self.handle)
    return PerfMetrics(handle)

  def create_data_loader(self, batch_tensor, full_array):
    """Create a SingleDataloader instance. 
             
    :param batch_tensor: a batch-sized tensor. Usually it is a input tensor of the model.  
    :type batch_tensor: Tensor
    
    :param full_array: the entire data.
    :type full_array: Numpy Array
             
    :returns:  SingleDataloader -- returns a dataloader instance.
    """
    full_array_shape = full_array.shape
    num_samples = full_array_shape[0]
    num_dim = len(full_array_shape)
    if (full_array.dtype == "float32"):
      datatype = DataType.DT_FLOAT
    elif (full_array.dtype == "int32"):
      datatype = DataType.DT_INT32
    else:
      assert 0, "unsupported datatype"

    if (num_dim == 2):
      full_tensor = self.create_tensor([num_samples, full_array_shape[1]], datatype)
    elif (num_dim == 4):
      full_tensor = self.create_tensor([num_samples, full_array_shape[1], full_array_shape[2], full_array_shape[3]], datatype)
    else:
      assert 0, "unsupported dims"

    full_tensor.attach_numpy_array(self._ffconfig, full_array)
    dataloader = SingleDataLoader(self, batch_tensor, full_tensor, num_samples, datatype)
    full_tensor.detach_numpy_array(self._ffconfig)

    return dataloader
    
  def create_data_loader2(self, batch_tensor, full_array):
    """Create a SingleDataloader instance. 
             
    :param batch_tensor: a batch-sized tensor. Usually it is a input tensor of the model.  
    :type batch_tensor: Tensor
    
    :param full_array: the entire data.
    :type full_array: Numpy Array
             
    :returns:  SingleDataloader -- returns a dataloader instance.
    """
    full_array_shape = full_array.shape
    num_samples = full_array_shape[0]
    if (full_array.dtype == "float32"):
      datatype = DataType.DT_FLOAT
    elif (full_array.dtype == "int32"):
      datatype = DataType.DT_INT32
    else:
      assert 0, "unsupported datatype"
    np_raw_ptr = full_array.__array_interface__['data']
    raw_ptr = ffi.cast("float*", np_raw_ptr[0])
    print("numpy array: %s, %s, %s" %( str(np_raw_ptr), str(raw_ptr), hex(np_raw_ptr[0])))
    dataloader = SingleDataLoader(self, batch_tensor, raw_ptr, num_samples, datatype)

    return dataloader

  def __get_initializer_handle(self, initializer):
    if (initializer == None):
      null_initializer = Initializer(None)
      return null_initializer.handle
    else:
      return initializer.handle

  def __get_op_handle(self, shared_op):
    if shared_op == None:
      op_handle = ffi.new('flexflow_op_t *')
      op_handle.impl = ffi.NULL
      op = Op(op_handle[0])
    else:
      op = shared_op
    return op.handle

# -----------------------------------------------------------------------
# SGDOptimizer
# -----------------------------------------------------------------------

class SGDOptimizer(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, lr=0.01, momentum=0.0, nesterov=False, weight_decay=0.0):
    self.handle = ffc.flexflow_sgd_optimizer_create(ffmodel.handle, lr, momentum, nesterov, weight_decay)
    self._handle = ffi.gc(self.handle, ffc.flexflow_sgd_optimizer_destroy)

  def set_learning_rate(self, learning_rate):
    ffc.flexflow_sgd_optimizer_set_lr(self.handle, learning_rate)

# -----------------------------------------------------------------------
# AdamOptimizer
# -----------------------------------------------------------------------

class AdamOptimizer(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, alpha=0.001, beta1=0.9, beta2=0.999, weight_decay=0.0, epsilon=1e-8):
    self.handle = ffc.flexflow_adam_optimizer_create(ffmodel.handle, alpha, beta1, beta2, weight_decay, epsilon)
    self._handle = ffi.gc(self.handle, ffc.flexflow_adam_optimizer_destroy)

  def set_learning_rate(self, learning_rate):
    ffc.flexflow_adam_optimizer_set_lr(self.handle, learning_rate)

# -----------------------------------------------------------------------
# Initializer
# -----------------------------------------------------------------------
class Initializer(object):
  __slots__ = ['handle', 'p_handle']
  def __init__(self, handle, p_handle=0):
    self.p_handle = ffi.new('flexflow_initializer_t *')
    if (handle == None):
      self.p_handle.impl = ffi.NULL
    else:
      self.p_handle.impl = handle.impl
    self.handle = self.p_handle[0]
    assert ffi.typeof(self.handle) == ffi.typeof('flexflow_initializer_t'), "Initializer handle is wrong"

# -----------------------------------------------------------------------
# GlorotUniform
# -----------------------------------------------------------------------

class GlorotUniformInitializer(Initializer):
  __slots__ = ['glorot_handle', '_glorot_handle']
  def __init__(self, seed):
    self.glorot_handle = ffc.flexflow_glorot_uniform_initializer_create(seed)
    self._glorot_handle = ffi.gc(self.glorot_handle, ffc.flexflow_glorot_uniform_initializer_destroy)
    super(GlorotUniformInitializer, self).__init__(self.glorot_handle)

# -----------------------------------------------------------------------
# ZeroInitializer
# -----------------------------------------------------------------------

class ZeroInitializer(Initializer):
  __slots__ = ['zero_handle', '_zero_handle']
  def __init__(self):
    self.zero_handle = ffc.flexflow_zero_initializer_create()
    self._zero_handle = ffi.gc(self.zero_handle, ffc.flexflow_zero_initializer_destroy)
    super(ZeroInitializer, self).__init__(self.zero_handle)

# -----------------------------------------------------------------------
# UniformInitializer
# -----------------------------------------------------------------------

class UniformInitializer(Initializer):
  __slots__ = ['uniform_handle', '_uniform_handle']
  def __init__(self, seed, minv, maxv):
    self.uniform_handle = ffc.flexflow_uniform_initializer_create(seed, minv, maxv)
    self._uniform_handle = ffi.gc(self.uniform_handle, ffc.flexflow_uniform_initializer_destroy)
    super(UniformInitializer, self).__init__(self.uniform_handle)

# -----------------------------------------------------------------------
# NormInitializer
# -----------------------------------------------------------------------

class NormInitializer(Initializer):
  __slots__ = ['norm_handle', '_norm_handle']
  def __init__(self, seed, meanv, stddev):
    self.norm_handle = ffc.flexflow_norm_initializer_create(seed, meanv, stddev)
    self._norm_handle = ffi.gc(self.norm_handle, ffc.flexflow_norm_initializer_destroy)
    super(NormInitializer, self).__init__(self.norm_handle)

# -----------------------------------------------------------------------
# PerfMetrics
# -----------------------------------------------------------------------

class PerfMetrics(object):
  __slots__= ['handle', '_handle']
  def __init__(self, handle):
    self.handle = handle
    self._handle = ffi.gc(self.handle, ffc.flexflow_per_metrics_destroy)

  def get_accuracy(self):
    return ffc.flexflow_per_metrics_get_accuracy(self.handle)

# -----------------------------------------------------------------------
# NetConfig
# -----------------------------------------------------------------------

class NetConfig(object):
  def __init__(self):
    self.handle = ffc.flexflow_net_config_create()
    self._handle = ffi.gc(self.handle, ffc.flexflow_net_config_destroy)
    cpath = ffc.flexflow_net_config_get_dataset_path(self.handle)
    self.dataset_path = ffi.string(cpath)

# -----------------------------------------------------------------------
# DLRMConfig
# -----------------------------------------------------------------------

class DLRMConfig(object):
  def __init__(self):
    self.handle = ffc.flexflow_dlrm_config_create()
    self._handle = ffi.gc(self.handle, ffc.flexflow_dlrm_config_destroy)

    cstr = ffc.flexflow_dlrm_config_get_dataset_path(self.handle)
    self.dataset_path = ffi.string(cstr)

    cstr = ffc.flexflow_dlrm_config_get_arch_interaction_op(self.handle)
    self.arch_interaction_op = ffi.string(cstr)

    self.sparse_feature_size = ffc.flexflow_dlrm_config_get_sparse_feature_size(self.handle)
    self.sigmoid_bot = ffc.flexflow_dlrm_config_get_sigmoid_bot(self.handle)
    self.sigmoid_top = ffc.flexflow_dlrm_config_get_sigmoid_top(self.handle)
    self.embedding_bag_size = ffc.flexflow_dlrm_config_get_embedding_bag_size(self.handle)
    self.loss_threshold = ffc.flexflow_dlrm_config_get_loss_threshold(self.handle)

    mlp_bot_c = ffc.flexflow_dlrm_config_get_mlp_bot(self.handle)
    self.mlp_bot = []
    for i in range(0, mlp_bot_c[0]):
      self.mlp_bot.append(mlp_bot_c[i+1])

    mlp_top_c = ffc.flexflow_dlrm_config_get_mlp_top(self.handle)
    self.mlp_top = []
    for i in range(0, mlp_top_c[0]):
      self.mlp_top.append(mlp_top_c[i+1])

    embedding_size_c = ffc.flexflow_dlrm_config_get_embedding_size(self.handle)
    self.embedding_size = []
    for i in range(0, embedding_size_c[0]):
      self.embedding_size.append(embedding_size_c[i+1])

# -----------------------------------------------------------------------
# DataLoader
# -----------------------------------------------------------------------

class DataLoader4D(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, input, label, full_input=0, full_label=0, num_samples=0, ffnetconfig=0):
    if (ffnetconfig == 0):
      self.handle = ffc.flexflow_dataloader_4d_create_v2(ffmodel.handle, input.handle, label.handle, full_input.handle, full_label.handle, num_samples)
    else:
      self.handle = ffc.flexflow_dataloader_4d_create(ffmodel.handle, ffnetconfig.handle, input.handle, label.handle)
    self._handle = ffi.gc(self.handle, ffc.flexflow_dataloader_4d_destroy)

  @property
  def num_samples(self):
    return ffc.flexflow_dataloader_4d_get_num_samples(self.handle)

  @num_samples.setter
  def num_samples(self, samples):
    ffc.flexflow_dataloader_4d_set_num_samples(self.handle, samples)

  def next_batch(self, ffmodel):
    ffc.flowflow_dataloader_4d_next_batch(self.handle, ffmodel.handle)

  def reset(self):
    ffc.flexflow_dataloader_4d_reset(self.handle)

class DataLoader2D(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, input, label, full_input=0, full_label=0, num_samples=0):
    self.handle = ffc.flexflow_dataloader_2d_create_v2(ffmodel.handle, input.handle, label.handle, full_input.handle, full_label.handle, num_samples)
    self._handle = ffi.gc(self.handle, ffc.flexflow_dataloader_2d_destroy)

  @property
  def num_samples(self):
    return ffc.flexflow_dataloader_2d_get_num_samples(self.handle)

  @num_samples.setter
  def num_samples(self, samples):
    ffc.flexflow_dataloader_2d_set_num_samples(self.handle, samples)

  def next_batch(self, ffmodel):
    ffc.flowflow_dataloader_2d_next_batch(self.handle, ffmodel.handle)

  def reset(self):
    ffc.flexflow_dataloader_2d_reset(self.handle)

# -----------------------------------------------------------------------
# Single DataLoader
# -----------------------------------------------------------------------

class SingleDataLoader(object):
  __slots__ = ['handle', '_handle']
  def __init__(self, ffmodel, input, full_input, num_samples, data_type):
    assert type(ffmodel) is FFModel, "SingleDataLoader ffmodel is wrong"
    assert type(input) is Tensor, "SingleDataLoader input is wrong"
    if type(full_input) is Tensor:
      self.init_from_tensor(ffmodel, input, full_input, num_samples, data_type)
    else:
      self.init_from_ptr(ffmodel, input, full_input, num_samples, data_type)
    self._handle = ffi.gc(self.handle, ffc.flexflow_single_dataloader_destroy)
    
  def init_from_tensor(self, ffmodel, input, full_input, num_samples, data_type):
    assert type(full_input) is Tensor, "SingleDataLoader full_input is wrong"
    c_data_type = enum_to_int(DataType, data_type)
    self.handle = ffc.flexflow_single_dataloader_create(ffmodel.handle, input.handle, full_input.handle, num_samples, c_data_type)
    
  def init_from_ptr(self, ffmodel, input, full_input, num_samples, data_type):
    # assert type(full_input) is Tensor, "SingleDataLoader full_input is wrong"
    c_data_type = enum_to_int(DataType, data_type)
    self.handle = ffc.flexflow_single_dataloader_create2(ffmodel.handle, input.handle, full_input, num_samples, c_data_type)

  @property
  def num_samples(self):
    return ffc.flexflow_single_dataloader_get_num_samples(self.handle)

  @num_samples.setter
  def num_samples(self, samples):
    ffc.flexflow_single_dataloader_set_num_samples(self.handle, samples)

  def next_batch(self, ffmodel):
    """Ask the dataloder to load the next batch to the :attr:`batch_tensor`. 
             
    :returns:  None -- no returns.
    """
    ffc.flowflow_single_dataloader_next_batch(self.handle, ffmodel.handle)

  def reset(self):
    """Reset the current position of the dataloder to 0. 
             
    :returns:  None -- no returns.
    """
    ffc.flexflow_single_dataloader_reset(self.handle)

class RegionNdarray(object):
  __slots__ = ['__array_interface__']
  def __init__(self, shape, data_type, base_ptr, strides, read_only):
    # See: https://docs.scipy.org/doc/numpy/reference/arrays.interface.html
    if (data_type == DataType.DT_FLOAT):
      field_type = "<f4"
    elif (data_type == DataType.DT_INT32):
      field_type = "<i4"
    else:
      assert 0, "unknown data type"
      field_type = "<f4"
    self.__array_interface__ = {
      'version': 3,
      'shape': shape,
      'typestr': field_type,
      'data': (base_ptr, read_only),
      'strides': strides,
    }
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



