def __init__()

in src/models.py [0:0]


    def __init__(self, D=8, W=256, n_in=None, n_out=4, skips=[4], use_viewdirs=False, net_idx=None, config=None):
        """
        """

        super(NeRF, self).__init__()
        self.net_idx = net_idx
        self.D = D
        self.W = W
        self.skips = skips

        if 'auto' in skips[0]:
            self.skips = [4]
        else:
            self.skips = [int(x) for x in self.skips]

        self.name = f"NeRF{self.net_idx}({W}x{D}{self.skips})"
        self.input_ch = 3
        self.input_ch_views = 3
        self.output_ch = n_out

        if config.posEnc and config.posEnc[net_idx] and "RayMarch" in config.inFeatures[net_idx]:
            if config.posEnc[net_idx] == "nerf":
                freq = config.posEncArgs[net_idx].split("-")
                self.input_ch = (int(freq[0])) * 6 + 3
                self.input_ch_views = (int(freq[1])) * 6 + 3

        self.use_viewdirs = use_viewdirs

        self.pts_linears = nn.ModuleList(
            [nn.Linear(self.input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + self.input_ch, W) for i in
                                        range(D - 1)])

        ### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
        self.views_linears = nn.ModuleList([nn.Linear(self.input_ch_views + W, W // 2)])

        ### Implementation according to the paper
        # self.views_linears = nn.ModuleList(
        #     [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])

        if use_viewdirs:
            self.feature_linear = nn.Linear(W, W)
            self.alpha_linear = nn.Linear(W, 1)
            self.rgb_linear = nn.Linear(W // 2, 3)
        else:
            self.output_linear = nn.Linear(W, self.output_ch)

        for i, l in enumerate(self.pts_linears):
            nn.init.kaiming_normal_(l.weight)

        for i, l in enumerate(self.views_linears):
            nn.init.kaiming_normal_(l.weight)