def all_gather_list()

in dpr/utils/dist_utils.py [0:0]


def all_gather_list(data, group=None, max_size=16384):
    """Gathers arbitrary data from all nodes into a list.
    Similar to :func:`~torch.distributed.all_gather` but for arbitrary Python
    data. Note that *data* must be picklable.
    Args:
        data (Any): data from the local worker to be gathered on other workers
        group (optional): group of the collective
    """
    SIZE_STORAGE_BYTES = 4  # int32 to encode the payload size

    enc = pickle.dumps(data)
    enc_size = len(enc)

    if enc_size + SIZE_STORAGE_BYTES > max_size:
        raise ValueError(
            'encoded data exceeds max_size, this can be fixed by increasing buffer size: {}'.format(enc_size))

    rank = get_rank()
    world_size = get_world_size()
    buffer_size = max_size * world_size

    if not hasattr(all_gather_list, '_buffer') or \
            all_gather_list._buffer.numel() < buffer_size:
        all_gather_list._buffer = torch.cuda.ByteTensor(buffer_size)
        all_gather_list._cpu_buffer = torch.ByteTensor(max_size).pin_memory()

    buffer = all_gather_list._buffer
    buffer.zero_()
    cpu_buffer = all_gather_list._cpu_buffer

    assert enc_size < 256 ** SIZE_STORAGE_BYTES, 'Encoded object size should be less than {} bytes'.format(
        256 ** SIZE_STORAGE_BYTES)

    size_bytes = enc_size.to_bytes(SIZE_STORAGE_BYTES, byteorder='big')

    cpu_buffer[0:SIZE_STORAGE_BYTES] = torch.ByteTensor(list(size_bytes))
    cpu_buffer[SIZE_STORAGE_BYTES: enc_size + SIZE_STORAGE_BYTES] = torch.ByteTensor(list(enc))

    start = rank * max_size
    size = enc_size + SIZE_STORAGE_BYTES
    buffer[start: start + size].copy_(cpu_buffer[:size])

    all_reduce(buffer, group=group)

    try:
        result = []
        for i in range(world_size):
            out_buffer = buffer[i * max_size: (i + 1) * max_size]
            size = int.from_bytes(out_buffer[0:SIZE_STORAGE_BYTES], byteorder='big')
            if size > 0:
                result.append(pickle.loads(bytes(out_buffer[SIZE_STORAGE_BYTES: size + SIZE_STORAGE_BYTES].tolist())))
        return result
    except pickle.UnpicklingError:
        raise Exception(
            'Unable to unpickle data from other workers. all_gather_list requires all '
            'workers to enter the function together, so this error usually indicates '
            'that the workers have fallen out of sync somehow. Workers can fall out of '
            'sync if one of them runs out of memory, or if there are other conditions '
            'in your training script that can cause one worker to finish an epoch '
            'while other workers are still iterating over their portions of the data.'
        )