def forward()

in common/nets/loss.py [0:0]


    def forward(self, depthmap_out, depthmap_gt):
        if isinstance(depthmap_out,list) and isinstance(depthmap_gt,list):
            mask = [((depthmap_out[i] != 0) * (depthmap_gt[i] != 0)).float() for i in range(len(depthmap_out))]
            loss = [self.smooth_l1_loss(depthmap_out[i], depthmap_gt[i]) * mask[i] for i in range(len(depthmap_out))]
            loss = sum(loss)/len(loss)
        elif isinstance(depthmap_out,torch.Tensor) and isinstance(depthmap_gt,torch.Tensor):
            mask = ((depthmap_out != 0) * (depthmap_gt != 0)).float()
            loss = self.smooth_l1_loss(depthmap_out, depthmap_gt) * mask
        else:
            assert 0

        return loss