def __init__()

in datasets/depth_dataset.py [0:0]


    def __init__(self, cfg):
        self.split = "train" ### Default is training
        self.label_objs = []
        self.data_paths = []
        self.label_paths = []
        self.cfg = cfg
        self.batchsize_per_replica = cfg["BATCHSIZE_PER_REPLICA"]
        self.label_sources = []#cfg["LABEL_SOURCES"]
        self.dataset_names = cfg["DATASET_NAMES"]
        self.label_type = cfg["LABEL_TYPE"]
        self.AUGMENT_COORDS_TO_FEATS = False #optional
        self._labels_init = False
        self._get_data_files("train")
        self.data_objs = np.load(self.data_paths[0]) ### Only load the first one for now

        #### Add the voxelizer here
        if ("Lidar" in cfg) and cfg["VOX"]:
            self.VOXEL_SIZE = [0.1, 0.1, 0.2]
       
            self.point_cloud_range = POINT_RANGE#np.array([  0. , -75. ,  -3. ,  75.0,  75. ,   3. ], dtype=np.float32)
            self.MAX_POINTS_PER_VOXEL = 5
            self.MAX_NUMBER_OF_VOXELS = 16000
            self.voxel_generator = VoxelGenerator(
                voxel_size=self.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=self.MAX_POINTS_PER_VOXEL,
                max_voxels=self.MAX_NUMBER_OF_VOXELS
            )
            grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(self.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = self.VOXEL_SIZE
        elif cfg["VOX"]:
            augment_data = (self.split == "TRAIN")
            #### Vox parameters here
            self.VOXEL_SIZE = 0.05 #0.02 # 5cm
            self.CLIP_BOUND = None#(-1000, -1000, -1000, 1000, 1000, 1000)

            self.data_aug_color_trans_ratio = 0.1
            self.data_aug_color_jitter_std = 0.05
            self.ELASTIC_DISTORT_PARAMS = ((0.2, 0.4), (0.8, 1.6))
            
            if augment_data:
                self.prevoxel_transform_train = []
                self.prevoxel_transform_train.append(transforms.ElasticDistortion(self.ELASTIC_DISTORT_PARAMS))
                self.prevoxel_transform = transforms.Compose(self.prevoxel_transform_train)
                
                self.input_transforms = []
                self.input_transforms += [
                    transforms.RandomDropout(0.2),
                    transforms.RandomHorizontalFlip('z', False),
                    #transforms.ChromaticAutoContrast(),
                    transforms.ChromaticTranslation(self.data_aug_color_trans_ratio),
                    transforms.ChromaticJitter(self.data_aug_color_jitter_std),
                    # t.HueSaturationTranslation(config.data_aug_hue_max, config.data_aug_saturation_max),
                ]
                self.input_transforms = transforms.Compose(self.input_transforms)
                
            # Coordinate Augmentation Arguments: Unlike feature augmentation, coordinate
            # augmentation has to be done before voxelization
            self.SCALE_AUGMENTATION_BOUND = (0.9, 1.1)
            self.ROTATION_AUGMENTATION_BOUND = ((-np.pi / 64, np.pi / 64), (-np.pi / 64, np.pi / 64), (-np.pi,np.pi))
            self.TRANSLATION_AUGMENTATION_RATIO_BOUND = ((-0.2, 0.2), (-0.2, 0.2), (0, 0))
            
            self.voxelizer = Voxelizer(
                voxel_size=self.VOXEL_SIZE,
                clip_bound=self.CLIP_BOUND,
                use_augmentation=augment_data,
                scale_augmentation_bound=self.SCALE_AUGMENTATION_BOUND,
                rotation_augmentation_bound=self.ROTATION_AUGMENTATION_BOUND,
                translation_augmentation_ratio_bound=self.TRANSLATION_AUGMENTATION_RATIO_BOUND,
                ignore_label=True)