def add_rpn_blobs()

in detectron/roi_data/rpn.py [0:0]


def add_rpn_blobs(blobs, im_scales, roidb):
    """Add blobs needed training RPN-only and end-to-end Faster R-CNN models."""
    if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_RPN:
        # RPN applied to many feature levels, as in the FPN paper
        k_max = cfg.FPN.RPN_MAX_LEVEL
        k_min = cfg.FPN.RPN_MIN_LEVEL
        foas = []
        for lvl in range(k_min, k_max + 1):
            field_stride = 2.**lvl
            anchor_sizes = (cfg.FPN.RPN_ANCHOR_START_SIZE * 2.**(lvl - k_min), )
            anchor_aspect_ratios = cfg.FPN.RPN_ASPECT_RATIOS
            foa = data_utils.get_field_of_anchors(
                field_stride, anchor_sizes, anchor_aspect_ratios
            )
            foas.append(foa)
        all_anchors = np.concatenate([f.field_of_anchors for f in foas])
    else:
        foa = data_utils.get_field_of_anchors(
            cfg.RPN.STRIDE, cfg.RPN.SIZES, cfg.RPN.ASPECT_RATIOS
        )
        all_anchors = foa.field_of_anchors

    for im_i, entry in enumerate(roidb):
        scale = im_scales[im_i]
        im_height = np.round(entry['height'] * scale)
        im_width = np.round(entry['width'] * scale)
        gt_inds = np.where(
            (entry['gt_classes'] > 0) & (entry['is_crowd'] == 0)
        )[0]
        gt_rois = entry['boxes'][gt_inds, :] * scale
        im_info = np.array([[im_height, im_width, scale]], dtype=np.float32)
        blobs['im_info'].append(im_info)

        # Add RPN targets
        if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_RPN:
            # RPN applied to many feature levels, as in the FPN paper
            rpn_blobs = _get_rpn_blobs(
                im_height, im_width, foas, all_anchors, gt_rois
            )
            for i, lvl in enumerate(range(k_min, k_max + 1)):
                for k, v in rpn_blobs[i].items():
                    blobs[k + '_fpn' + str(lvl)].append(v)
        else:
            # Classical RPN, applied to a single feature level
            rpn_blobs = _get_rpn_blobs(
                im_height, im_width, [foa], all_anchors, gt_rois
            )
            for k, v in rpn_blobs.items():
                blobs[k].append(v)

    for k, v in blobs.items():
        if isinstance(v, list) and len(v) > 0:
            blobs[k] = np.concatenate(v)

    valid_keys = [
        'has_visible_keypoints', 'boxes', 'segms', 'seg_areas', 'gt_classes',
        'gt_overlaps', 'is_crowd', 'box_to_gt_ind_map', 'gt_keypoints'
    ]
    minimal_roidb = [{} for _ in range(len(roidb))]
    for i, e in enumerate(roidb):
        for k in valid_keys:
            if k in e:
                minimal_roidb[i][k] = e[k]
    blobs['roidb'] = blob_utils.serialize(minimal_roidb)

    # Always return valid=True, since RPN minibatches are valid by design
    return True