fairseq/modules/masked_multihead_attention.py [58:171]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if 'prev_key' in saved_state:
                # previous time steps are cached - no need to recompute
                # key and value if they are static
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else:
            saved_state = None
        if self.self_attention:
            # self-attention
            q, k, v = self.in_proj_qkv(query)
        #elif masked_attn is not None:
        #    q = self.in_proj_q(query)
        #    k, v = self.in_proj_kv(key)
        elif self.encoder_decoder_attention:
            # encoder-decoder attention
            q = self.in_proj_q(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                k = self.in_proj_k(key)
                v = self.in_proj_v(key)

        else:
            q = self.in_proj_q(query)
            k = self.in_proj_k(key)
            v = self.in_proj_v(value)
        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)

        q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
        if k is not None:
            k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
        if v is not None:
            v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)

        if saved_state is not None:
            # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
            if 'prev_key' in saved_state:
                prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    k = prev_key
                else:
                    k = torch.cat((prev_key, k), dim=1)
            if 'prev_value' in saved_state:
                prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    v = prev_value
                else:
                    v = torch.cat((prev_value, v), dim=1)
            saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim)
            saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim)

            self._set_input_buffer(incremental_state, saved_state)

        src_len = k.size(1)

        # This is part of a workaround to get around fork/join parallelism
        # not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]):
            key_padding_mask = None

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == src_len

        if self.add_zero_attn:
            src_len += 1
            k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
            v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
            if attn_mask is not None:
                attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1)

        attn_weights = torch.bmm(q, k.transpose(1, 2))
        attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)

        assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace:
                attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if key_padding_mask is not None:
            # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            if self.onnx_trace:
                attn_weights = torch.where(
                    key_padding_mask.unsqueeze(1).unsqueeze(2),
                    torch.Tensor([float("-Inf")]),
                    attn_weights.float()
                ).type_as(attn_weights)
            else:
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2),
                    float('-inf'),
                )
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



fairseq/modules/multihead_attention.py [131:242]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if 'prev_key' in saved_state:
                # previous time steps are cached - no need to recompute
                # key and value if they are static
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else:
            saved_state = None

        if self.self_attention:
            # self-attention
            q, k, v = self.in_proj_qkv(query)
        elif self.encoder_decoder_attention:
            # encoder-decoder attention
            q = self.in_proj_q(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                k = self.in_proj_k(key)
                v = self.in_proj_v(key)

        else:
            q = self.in_proj_q(query)
            k = self.in_proj_k(key)
            v = self.in_proj_v(value)
        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)

        q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
        if k is not None:
            k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
        if v is not None:
            v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)

        if saved_state is not None:
            # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
            if 'prev_key' in saved_state:
                prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    k = prev_key
                else:
                    k = torch.cat((prev_key, k), dim=1)
            if 'prev_value' in saved_state:
                prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    v = prev_value
                else:
                    v = torch.cat((prev_value, v), dim=1)
            saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim)
            saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim)

            self._set_input_buffer(incremental_state, saved_state)

        src_len = k.size(1)

        # This is part of a workaround to get around fork/join parallelism
        # not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]):
            key_padding_mask = None

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == src_len

        if self.add_zero_attn:
            src_len += 1
            k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
            v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
            if attn_mask is not None:
                attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1)

        attn_weights = torch.bmm(q, k.transpose(1, 2))
        attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)

        assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace:
                attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if key_padding_mask is not None:
            # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            if self.onnx_trace:
                attn_weights = torch.where(
                    key_padding_mask.unsqueeze(1).unsqueeze(2),
                    torch.Tensor([float("-Inf")]),
                    attn_weights.float()
                ).type_as(attn_weights)
            else:
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2),
                    float('-inf'),
                )
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



