def update()

in domainbed/algorithms.py [0:0]


    def update(self, minibatches, unlabeled=None):
        device = "cuda" if minibatches[0][0].is_cuda else "cpu"

        # inputs
        all_x = torch.cat([x for x, y in minibatches])
        # labels
        all_y = torch.cat([y for _, y in minibatches])
        # one-hot labels
        all_o = torch.nn.functional.one_hot(all_y, self.num_classes)
        # features
        all_f = self.featurizer(all_x)
        # predictions
        all_p = self.classifier(all_f)

        # Equation (1): compute gradients with respect to representation
        all_g = autograd.grad((all_p * all_o).sum(), all_f)[0]

        # Equation (2): compute top-gradient-percentile mask
        percentiles = np.percentile(all_g.cpu(), self.drop_f, axis=1)
        percentiles = torch.Tensor(percentiles)
        percentiles = percentiles.unsqueeze(1).repeat(1, all_g.size(1))
        mask_f = all_g.lt(percentiles.to(device)).float()

        # Equation (3): mute top-gradient-percentile activations
        all_f_muted = all_f * mask_f

        # Equation (4): compute muted predictions
        all_p_muted = self.classifier(all_f_muted)

        # Section 3.3: Batch Percentage
        all_s = F.softmax(all_p, dim=1)
        all_s_muted = F.softmax(all_p_muted, dim=1)
        changes = (all_s * all_o).sum(1) - (all_s_muted * all_o).sum(1)
        percentile = np.percentile(changes.detach().cpu(), self.drop_b)
        mask_b = changes.lt(percentile).float().view(-1, 1)
        mask = torch.logical_or(mask_f, mask_b).float()

        # Equations (3) and (4) again, this time mutting over examples
        all_p_muted_again = self.classifier(all_f * mask)

        # Equation (5): update
        loss = F.cross_entropy(all_p_muted_again, all_y)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {'loss': loss.item()}