in drqa/reader/rnn_reader.py [0:0]
def __init__(self, args, normalize=True):
super(RnnDocReader, self).__init__()
# Store config
self.args = args
# Word embeddings (+1 for padding)
self.embedding = nn.Embedding(args.vocab_size,
args.embedding_dim,
padding_idx=0)
# Projection for attention weighted question
if args.use_qemb:
self.qemb_match = layers.SeqAttnMatch(args.embedding_dim)
# Input size to RNN: word emb + question emb + manual features
doc_input_size = args.embedding_dim + args.num_features
if args.use_qemb:
doc_input_size += args.embedding_dim
# RNN document encoder
self.doc_rnn = layers.StackedBRNN(
input_size=doc_input_size,
hidden_size=args.hidden_size,
num_layers=args.doc_layers,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=args.concat_rnn_layers,
rnn_type=self.RNN_TYPES[args.rnn_type],
padding=args.rnn_padding,
)
# RNN question encoder
self.question_rnn = layers.StackedBRNN(
input_size=args.embedding_dim,
hidden_size=args.hidden_size,
num_layers=args.question_layers,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=args.concat_rnn_layers,
rnn_type=self.RNN_TYPES[args.rnn_type],
padding=args.rnn_padding,
)
# Output sizes of rnn encoders
doc_hidden_size = 2 * args.hidden_size
question_hidden_size = 2 * args.hidden_size
if args.concat_rnn_layers:
doc_hidden_size *= args.doc_layers
question_hidden_size *= args.question_layers
# Question merging
if args.question_merge not in ['avg', 'self_attn']:
raise NotImplementedError('merge_mode = %s' % args.merge_mode)
if args.question_merge == 'self_attn':
self.self_attn = layers.LinearSeqAttn(question_hidden_size)
# Bilinear attention for span start/end
self.start_attn = layers.BilinearSeqAttn(
doc_hidden_size,
question_hidden_size,
normalize=normalize,
)
self.end_attn = layers.BilinearSeqAttn(
doc_hidden_size,
question_hidden_size,
normalize=normalize,
)