def eval_accuracies()

in scripts/reader/train.py [0:0]


def eval_accuracies(pred_s, target_s, pred_e, target_e):
    """An unofficial evalutation helper.
    Compute exact start/end/complete match accuracies for a batch.
    """
    # Convert 1D tensors to lists of lists (compatibility)
    if torch.is_tensor(target_s):
        target_s = [[e.item()] for e in target_s]
        target_e = [[e.item()] for e in target_e]

    # Compute accuracies from targets
    batch_size = len(pred_s)
    start = utils.AverageMeter()
    end = utils.AverageMeter()
    em = utils.AverageMeter()
    for i in range(batch_size):
        # Start matches
        if pred_s[i] in target_s[i]:
            start.update(1)
        else:
            start.update(0)

        # End matches
        if pred_e[i] in target_e[i]:
            end.update(1)
        else:
            end.update(0)

        # Both start and end match
        if any([1 for _s, _e in zip(target_s[i], target_e[i])
                if _s == pred_s[i] and _e == pred_e[i]]):
            em.update(1)
        else:
            em.update(0)
    return start.avg * 100, end.avg * 100, em.avg * 100