in egg/core/util.py [0:0]
def _populate_cl_params(arg_parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
arg_parser.add_argument(
"--random_seed", type=int, default=None, help="Set random seed"
)
# trainer params
arg_parser.add_argument(
"--checkpoint_dir",
type=str,
default=None,
help="Where the checkpoints are stored",
)
arg_parser.add_argument(
"--preemptable",
default=False,
action="store_true",
help="If the flag is set, Trainer would always try to initialise itself from a checkpoint",
)
arg_parser.add_argument(
"--checkpoint_freq",
type=int,
default=0,
help="How often the checkpoints are saved",
)
arg_parser.add_argument(
"--validation_freq",
type=int,
default=1,
help="The validation would be run every `validation_freq` epochs",
)
arg_parser.add_argument(
"--n_epochs",
type=int,
default=10,
help="Number of epochs to train (default: 10)",
)
arg_parser.add_argument(
"--load_from_checkpoint",
type=str,
default=None,
help="If the parameter is set, model, trainer, and optimizer states are loaded from the "
"checkpoint (default: None)",
)
# cuda setup
arg_parser.add_argument(
"--no_cuda", default=False, help="disable cuda", action="store_true"
)
# dataset
arg_parser.add_argument(
"--batch_size",
type=int,
default=32,
help="Input batch size for training (default: 32)",
)
# optimizer
arg_parser.add_argument(
"--optimizer",
type=str,
default="adam",
help="Optimizer to use [adam, sgd, adagrad] (default: adam)",
)
arg_parser.add_argument(
"--lr", type=float, default=1e-2, help="Learning rate (default: 1e-2)"
)
arg_parser.add_argument(
"--update_freq",
type=int,
default=1,
help="Learnable weights are updated every update_freq batches (default: 1)",
)
# Channel parameters
arg_parser.add_argument(
"--vocab_size",
type=int,
default=10,
help="Number of symbols (terms) in the vocabulary (default: 10)",
)
arg_parser.add_argument(
"--max_len", type=int, default=1, help="Max length of the sequence (default: 1)"
)
# Setting up tensorboard
arg_parser.add_argument(
"--tensorboard", default=False, help="enable tensorboard", action="store_true"
)
arg_parser.add_argument(
"--tensorboard_dir", type=str, default="runs/", help="Path for tensorboard log"
)
arg_parser.add_argument(
"--distributed_port",
default=18363,
type=int,
help="Port to use in distributed learning",
)
arg_parser.add_argument(
"--fp16",
default=False,
help="Use mixed-precision for training/evaluating models",
action="store_true",
)
return arg_parser