in egg/zoo/channel/train.py [0:0]
def get_params(params):
parser = argparse.ArgumentParser()
parser.add_argument(
"--n_features",
type=int,
default=10,
help='Dimensionality of the "concept" space (default: 10)',
)
parser.add_argument(
"--batches_per_epoch",
type=int,
default=1000,
help="Number of batches per epoch (default: 1000)",
)
parser.add_argument(
"--sender_hidden",
type=int,
default=10,
help="Size of the hidden layer of Sender (default: 10)",
)
parser.add_argument(
"--receiver_hidden",
type=int,
default=10,
help="Size of the hidden layer of Receiver (default: 10)",
)
parser.add_argument(
"--receiver_num_layers",
type=int,
default=1,
help="Number hidden layers of receiver. Only in reinforce (default: 1)",
)
parser.add_argument(
"--sender_num_layers",
type=int,
default=1,
help="Number hidden layers of receiver. Only in reinforce (default: 1)",
)
parser.add_argument(
"--receiver_num_heads",
type=int,
default=8,
help="Number of attention heads for Transformer Receiver (default: 8)",
)
parser.add_argument(
"--sender_num_heads",
type=int,
default=8,
help="Number of self-attention heads for Transformer Sender (default: 8)",
)
parser.add_argument(
"--sender_embedding",
type=int,
default=10,
help="Dimensionality of the embedding hidden layer for Sender (default: 10)",
)
parser.add_argument(
"--receiver_embedding",
type=int,
default=10,
help="Dimensionality of the embedding hidden layer for Receiver (default: 10)",
)
parser.add_argument("--causal_sender", default=False, action="store_true")
parser.add_argument("--causal_receiver", default=False, action="store_true")
parser.add_argument(
"--sender_generate_style",
type=str,
default="in-place",
choices=["standard", "in-place"],
help="How the next symbol is generated within the TransformerDecoder (default: in-place)",
)
parser.add_argument(
"--sender_cell",
type=str,
default="rnn",
help="Type of the cell used for Sender {rnn, gru, lstm, transformer} (default: rnn)",
)
parser.add_argument(
"--receiver_cell",
type=str,
default="rnn",
help="Type of the model used for Receiver {rnn, gru, lstm, transformer} (default: rnn)",
)
parser.add_argument(
"--sender_entropy_coeff",
type=float,
default=1e-1,
help="The entropy regularisation coefficient for Sender (default: 1e-1)",
)
parser.add_argument(
"--receiver_entropy_coeff",
type=float,
default=1e-1,
help="The entropy regularisation coefficient for Receiver (default: 1e-1)",
)
parser.add_argument(
"--probs",
type=str,
default="uniform",
help="Prior distribution over the concepts (default: uniform)",
)
parser.add_argument(
"--length_cost",
type=float,
default=0.0,
help="Penalty for the message length, each symbol would before <EOS> would be "
"penalized by this cost (default: 0.0)",
)
parser.add_argument(
"--name",
type=str,
default="model",
help="Name for your checkpoint (default: model)",
)
parser.add_argument(
"--early_stopping_thr",
type=float,
default=0.9999,
help="Early stopping threshold on accuracy (default: 0.9999)",
)
args = core.init(parser, params)
return args