in egg/zoo/external_game/game.py [0:0]
def get_params():
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_data", type=str, default=None, help="Path to the train data"
)
parser.add_argument(
"--validation_data", type=str, default=None, help="Path to the validation data"
)
parser.add_argument(
"--dump_data",
type=str,
default=None,
help="Path to the data for which to produce output information",
)
parser.add_argument(
"--dump_output",
type=str,
default=None,
help="Path for dumping output information",
)
parser.add_argument(
"--batches_per_epoch",
type=int,
default=1000,
help="Number of batches per epoch (default: 1000)",
)
parser.add_argument(
"--sender_hidden",
type=int,
default=10,
help="Size of the hidden layer of Sender (default: 10)",
)
parser.add_argument(
"--receiver_hidden",
type=int,
default=10,
help="Size of the hidden layer of Receiver (default: 10)",
)
parser.add_argument(
"--sender_embedding",
type=int,
default=10,
help="Dimensionality of the embedding hidden layer for Sender (default: 10)",
)
parser.add_argument(
"--receiver_embedding",
type=int,
default=10,
help="Dimensionality of the embedding hidden layer for Receiver (default: 10)",
)
parser.add_argument(
"--sender_cell",
type=str,
default="rnn",
help="Type of the cell used for Sender {rnn, gru, lstm} (default: rnn)",
)
parser.add_argument(
"--receiver_cell",
type=str,
default="rnn",
help="Type of the cell used for Receiver {rnn, gru, lstm} (default: rnn)",
)
parser.add_argument(
"--sender_layers",
type=int,
default=1,
help="Number of layers in Sender's RNN (default: 1)",
)
parser.add_argument(
"--receiver_layers",
type=int,
default=1,
help="Number of layers in Receiver's RNN (default: 1)",
)
parser.add_argument(
"--sender_entropy_coeff",
type=float,
default=1e-2,
help="The entropy regularisation coefficient for Sender (default: 1e-2)",
)
parser.add_argument(
"--receiver_entropy_coeff",
type=float,
default=1e-2,
help="The entropy regularisation coefficient for Receiver (default: 1e-2)",
)
parser.add_argument(
"--sender_lr",
type=float,
default=1e-1,
help="Learning rate for Sender's parameters (default: 1e-1)",
)
parser.add_argument(
"--receiver_lr",
type=float,
default=1e-1,
help="Learning rate for Receiver's parameters (default: 1e-1)",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="GS temperature for the sender (default: 1.0)",
)
parser.add_argument(
"--train_mode",
type=str,
default="gs",
help="Selects whether GumbelSoftmax or Reinforce is used" "(default: gs)",
)
parser.add_argument(
"--n_classes",
type=int,
default=None,
help="Number of classes for Receiver to output. If not set, is automatically deduced from "
"the training set",
)
args = core.init(parser)
return args