tools/kd/train_net.py [314:495]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def calculate_and_update_precise_bn(loader, model, num_iters=200):
    """
    Update the stats in bn layers by calculate the precise stats.
    Args:
        loader (loader): data loader to provide training data.
        model (model): model to update the bn stats.
        num_iters (int): number of iterations to compute and update the bn stats.
    """

    def _gen_loader():
        for inputs, _, _, _ in loader:
            if isinstance(inputs, (list,)):
                for i in range(len(inputs)):
                    inputs[i] = inputs[i].cuda(non_blocking=True)
            else:
                inputs = inputs.cuda(non_blocking=True)
            yield inputs

    # Update the bn stats.
    update_bn_stats(model, _gen_loader(), num_iters)


def build_trainer(cfg):
    """
    Build training model and its associated tools, including optimizer,
    dataloaders and meters.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    Returns:
        model (nn.Module): training model.
        optimizer (Optimizer): optimizer.
        train_loader (DataLoader): training data loader.
        val_loader (DataLoader): validatoin data loader.
        precise_bn_loader (DataLoader): training data loader for computing
            precise BN.
        train_meter (TrainMeter): tool for measuring training stats.
        val_meter (ValMeter): tool for measuring validation stats.
    """
    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")
    precise_bn_loader = loader.construct_loader(
        cfg, "train", is_precise_bn=True
    )
    # Create meters.
    train_meter = TrainMeter(len(train_loader), cfg)
    val_meter = ValMeter(len(val_loader), cfg)

    return (
        model,
        optimizer,
        train_loader,
        val_loader,
        precise_bn_loader,
        train_meter,
        val_meter,
    )


def train(cfg):
    """
    Train a video model for many epochs on train set and evaluate it on val set.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Init multigrid.
    multigrid = None
    if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE:
        multigrid = MultigridSchedule()
        cfg = multigrid.init_multigrid(cfg)
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0)
    # Print config.
    logger.info("Train with config:")
    logger.info(pprint.pformat(cfg))

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Load a checkpoint to resume training if applicable.
    start_epoch = cu.load_train_checkpoint(cfg, model, optimizer)

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")
    precise_bn_loader = loader.construct_loader(
        cfg, "train", is_precise_bn=True
    )

    # Create meters.
    if cfg.DETECTION.ENABLE:
        train_meter = AVAMeter(len(train_loader), cfg, mode="train")
        val_meter = AVAMeter(len(val_loader), cfg, mode="val")
    else:
        train_meter = TrainMeter(len(train_loader), cfg)
        val_meter = ValMeter(len(val_loader), cfg)

    # set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
        cfg.NUM_GPUS * cfg.NUM_SHARDS
    ):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # Perform the training loop.
    logger.info("Start epoch: {}".format(start_epoch + 1))

    for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch)
            if changed:
                (
                    model,
                    optimizer,
                    train_loader,
                    val_loader,
                    precise_bn_loader,
                    train_meter,
                    val_meter,
                ) = build_trainer(cfg)

                # Load checkpoint.
                if cu.has_checkpoint(cfg.OUTPUT_DIR):
                    last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR)
                    assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint
                else:
                    last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH
                logger.info("Load from {}".format(last_checkpoint))
                cu.load_checkpoint(
                    last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer
                )

        # Shuffle the dataset.
        loader.shuffle_dataset(train_loader, cur_epoch)
        # Train for one epoch.
        train_epoch(
            train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer
        )

        # Compute precise BN stats.
        if cfg.BN.USE_PRECISE_STATS and len(get_bn_modules(model)) > 0:
            calculate_and_update_precise_bn(
                precise_bn_loader,
                model,
                min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)),
            )
        _ = misc.aggregate_sub_bn_stats(model)

        # Save a checkpoint.
        if cu.is_checkpoint_epoch(
            cfg, cur_epoch, None if multigrid is None else multigrid.schedule
        ):
            cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, cfg)
        # Evaluate the model on validation set.
        if misc.is_eval_epoch(
            cfg, cur_epoch, None if multigrid is None else multigrid.schedule
        ):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



tools/train_net.py [278:459]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def calculate_and_update_precise_bn(loader, model, num_iters=200):
    """
    Update the stats in bn layers by calculate the precise stats.
    Args:
        loader (loader): data loader to provide training data.
        model (model): model to update the bn stats.
        num_iters (int): number of iterations to compute and update the bn stats.
    """

    def _gen_loader():
        for inputs, _, _, _ in loader:
            if isinstance(inputs, (list,)):
                for i in range(len(inputs)):
                    inputs[i] = inputs[i].cuda(non_blocking=True)
            else:
                inputs = inputs.cuda(non_blocking=True)
            yield inputs

    # Update the bn stats.
    update_bn_stats(model, _gen_loader(), num_iters)


def build_trainer(cfg):
    """
    Build training model and its associated tools, including optimizer,
    dataloaders and meters.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    Returns:
        model (nn.Module): training model.
        optimizer (Optimizer): optimizer.
        train_loader (DataLoader): training data loader.
        val_loader (DataLoader): validatoin data loader.
        precise_bn_loader (DataLoader): training data loader for computing
            precise BN.
        train_meter (TrainMeter): tool for measuring training stats.
        val_meter (ValMeter): tool for measuring validation stats.
    """
    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")
    precise_bn_loader = loader.construct_loader(
        cfg, "train", is_precise_bn=True
    )
    # Create meters.
    train_meter = TrainMeter(len(train_loader), cfg)
    val_meter = ValMeter(len(val_loader), cfg)

    return (
        model,
        optimizer,
        train_loader,
        val_loader,
        precise_bn_loader,
        train_meter,
        val_meter,
    )


def train(cfg):
    """
    Train a video model for many epochs on train set and evaluate it on val set.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Init multigrid.
    multigrid = None
    if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE:
        multigrid = MultigridSchedule()
        cfg = multigrid.init_multigrid(cfg)
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0)
    # Print config.
    logger.info("Train with config:")
    logger.info(pprint.pformat(cfg))

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Load a checkpoint to resume training if applicable.
    start_epoch = cu.load_train_checkpoint(cfg, model, optimizer)

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")
    precise_bn_loader = loader.construct_loader(
        cfg, "train", is_precise_bn=True
    )

    # Create meters.
    if cfg.DETECTION.ENABLE:
        train_meter = AVAMeter(len(train_loader), cfg, mode="train")
        val_meter = AVAMeter(len(val_loader), cfg, mode="val")
    else:
        train_meter = TrainMeter(len(train_loader), cfg)
        val_meter = ValMeter(len(val_loader), cfg)

    # set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
        cfg.NUM_GPUS * cfg.NUM_SHARDS
    ):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # Perform the training loop.
    logger.info("Start epoch: {}".format(start_epoch + 1))

    for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch)
            if changed:
                (
                    model,
                    optimizer,
                    train_loader,
                    val_loader,
                    precise_bn_loader,
                    train_meter,
                    val_meter,
                ) = build_trainer(cfg)

                # Load checkpoint.
                if cu.has_checkpoint(cfg.OUTPUT_DIR):
                    last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR)
                    assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint
                else:
                    last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH
                logger.info("Load from {}".format(last_checkpoint))
                cu.load_checkpoint(
                    last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer
                )

        # Shuffle the dataset.
        loader.shuffle_dataset(train_loader, cur_epoch)
        # Train for one epoch.
        train_epoch(
            train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer
        )

        # Compute precise BN stats.
        if cfg.BN.USE_PRECISE_STATS and len(get_bn_modules(model)) > 0:
            calculate_and_update_precise_bn(
                precise_bn_loader,
                model,
                min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)),
            )
        _ = misc.aggregate_sub_bn_stats(model)

        # Save a checkpoint.
        if cu.is_checkpoint_epoch(
            cfg, cur_epoch, None if multigrid is None else multigrid.schedule
        ):
            cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, cfg)
        # Evaluate the model on validation set.
        if misc.is_eval_epoch(
            cfg, cur_epoch, None if multigrid is None else multigrid.schedule
        ):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



