def __init__()

in empchat/transformer_local.py [0:0]


    def __init__(self, opt, dictionary):
        super(TransformerAdapter, self).__init__()
        self.opt = opt
        self.pad_idx = dictionary[PAD_TOKEN]
        self.embeddings = nn.Embedding(
            len(dictionary), opt.embeddings_size, padding_idx=self.pad_idx
        )
        if not opt.learn_embeddings:
            self.embeddings.weight.requires_grad = False
        nn.init.normal_(self.embeddings.weight, mean=0, std=0.05)
        dropout = opt.transformer_dropout if opt.transformer_dropout else 0
        self.ctx_transformer = TransformerModel(
            opt.transformer_n_heads,
            opt.n_layers,
            opt.transformer_dim,
            len(dictionary),
            embedding=self.embeddings,
            dropout=dropout,
        )
        self.cand_transformer = TransformerModel(
            opt.transformer_n_heads,
            opt.n_layers,
            opt.transformer_dim,
            len(dictionary),
            embedding=self.embeddings,
            dropout=dropout,
        )
        self.embeddings = self.ctx_transformer.embeddings