def train_model()

in retrieval_train.py [0:0]


def train_model(opt_):
    env = TrainEnvironment(opt_)
    dictionary = env.dict
    if opt_.load_checkpoint:
        net, dictionary = load_model(opt_.load_checkpoint, opt_)
        env = TrainEnvironment(opt_, dictionary)
        env.dict = dictionary
    else:
        net = create_model(opt_, dictionary["words"])
        if opt_.embeddings and opt_.embeddings != "None":
            load_embeddings(opt_, dictionary["words"], net)
    paramnum = 0
    trainable = 0
    for name, parameter in net.named_parameters():
        if parameter.requires_grad:
            trainable += parameter.numel()
        paramnum += parameter.numel()
    print("TRAINABLE", paramnum, trainable)
    if opt_.cuda:
        net = torch.nn.DataParallel(net)
        net = net.cuda()
    if opt_.optimizer == "adamax":
        lr = opt_.learning_rate or 0.002
        named_params_to_optimize = filter(
            lambda p: p[1].requires_grad, net.named_parameters()
        )
        params_to_optimize = (p[1] for p in named_params_to_optimize)
        optimizer = optim.Adamax(params_to_optimize, lr=lr)
        if opt_.epoch_start != 0:
            saved_params = torch.load(
                opt_.load_checkpoint, map_location=lambda storage, loc: storage
            )
            optimizer.load_state_dict(saved_params["optim_dict"])
    else:
        lr = opt_.learning_rate or 0.01
        optimizer = optim.SGD(
            filter(lambda p: p.requires_grad, net.parameters()), lr=lr
        )
    start_time = time.time()
    best_loss = float("+inf")
    test_data_shuffled = env.build_valid_dataloader(True)
    test_data_not_shuffled = env.build_valid_dataloader(False)
    with torch.no_grad():
        validate(
            0,
            net,
            test_data_shuffled,
            nb_candidates=opt_.hits_at_nb_cands,
            shuffled_str="shuffled",
        )
    train_data = None
    for epoch in range(opt_.epoch_start, opt_.num_epochs):
        if train_data is None or opt_.dataset_name == "reddit":
            train_data = env.build_train_dataloader(epoch)
        train(epoch, start_time, net, optimizer, opt_, train_data)
        with torch.no_grad():
            # We compute the loss both for shuffled and not shuffled case.
            # however, the loss that determines if the model is better is the
            # same as the one used for training.
            loss_shuffled = validate(
                epoch,
                net,
                test_data_shuffled,
                nb_candidates=opt_.hits_at_nb_cands,
                shuffled_str="shuffled",
            )
            loss_not_shuffled = validate(
                epoch,
                net,
                test_data_not_shuffled,
                nb_candidates=opt_.hits_at_nb_cands,
                shuffled_str="not-shuffled",
            )
            if opt_.no_shuffle:
                loss = loss_not_shuffled
            else:
                loss = loss_shuffled
            if loss < best_loss:
                best_loss = loss
                best_loss_epoch = epoch
                logging.info(f"New best loss, saving model to {opt_.model_file}")
                save_model(opt_.model_file, net, dictionary, optimizer)
            # Stop if it's been too many epochs since the loss has decreased
            if opt_.stop_crit_num_epochs != -1:
                if epoch - best_loss_epoch >= opt_.stop_crit_num_epochs:
                    break
    return net, dictionary