in benchmarks/dlrm/ootb/dlrm_s_pytorch.py [0:0]
def print_weights(self):
if self.use_fbgemm_gpu and len(self.fbgemm_emb_l):
ntables_l = [
len(e.fbgemm_gpu_emb_bag.embedding_specs) for e in self.fbgemm_emb_l
]
for j in range(ntables_l[0] + 1):
for k, e in enumerate(self.fbgemm_emb_l):
if j < ntables_l[k]:
print(
e.fbgemm_gpu_emb_bag.split_embedding_weights()[j]
.detach()
.cpu()
.numpy()
)
elif self.quantize_bits != 32:
for e in self.emb_l_q:
print(e.data.detach().cpu().numpy())
else: # if self.emb_l:
for param in self.emb_l.parameters():
print(param.detach().cpu().numpy())
if isinstance(self.v_W_l, nn.ParameterList):
for param in self.v_W_l.parameters():
print(param.detach().cpu().numpy())
for param in self.bot_l.parameters():
print(param.detach().cpu().numpy())
for param in self.top_l.parameters():
print(param.detach().cpu().numpy())