def cli_main()

in mdl.py [0:0]


def cli_main(args):
    parser = options.get_training_parser()
    parser.add_argument("--mdl-block-size", type=int, default=1, 
        help="Size of the transmitted block. Used when calculating description length")
    parser.add_argument("--mdl-batches-per-epoch", type=int, default=3000, help="Number of updates in per training")
    parser.add_argument("--mdl-batch-size", type=int, default=None, help="If set, specifies the number of examples sampled (with replacement) "
                "for each update of the learner. If not specified, all examples available at the step are used.")
    parser.add_argument("--mdl-train-examples", type=int, default=None, required=True, 
            help="First `mdl-train-examples`  lines in the training dataset are considered as initial training data (see README).")
    args = options.parse_args_and_arch(parser, input_args=args)

    assert torch.cuda.is_available()
    assert args.mdl_train_examples

    if not args.sentence_avg:
        print('Overriding --sentence-avg', file=sys.stderr)
        args.sentence_avg = True

    # override multi-gpu logic
    args.distributed_world_size = 1
    main(args)