src/evaluation.py [108:118]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        all_preds = [[] for _ in range(params.n_attr)]
        for i in range(0, len(data), bs):
            # batch / encode / decode
            batch_x, batch_y = data.eval_batch(i, i + bs)
            enc_outputs = self.ae.encode(batch_x)
            # flip all attributes one by one
            k = 0
            for j, (_, n_cat) in enumerate(params.attr):
                for value in range(n_cat):
                    flipped = flip_attributes(batch_y, params, j, new_value=value)
                    dec_outputs = self.ae.decode(enc_outputs, flipped)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/evaluation.py [141:151]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        all_preds = [[] for _ in range(params.n_attr)]
        for i in range(0, len(data), bs):
            # batch / encode / decode
            batch_x, batch_y = data.eval_batch(i, i + bs)
            enc_outputs = self.ae.encode(batch_x)
            # flip all attributes one by one
            k = 0
            for j, (_, n_cat) in enumerate(params.attr):
                for value in range(n_cat):
                    flipped = flip_attributes(batch_y, params, j, new_value=value)
                    dec_outputs = self.ae.decode(enc_outputs, flipped)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



