def __init__()

in src/model.py [0:0]


    def __init__(self, params):
        super(PatchDiscriminator, self).__init__()

        self.img_sz = params.img_sz
        self.img_fm = params.img_fm
        self.init_fm = params.init_fm
        self.max_fm = params.max_fm
        self.n_patch_dis_layers = 3

        layers = []
        layers.append(nn.Conv2d(self.img_fm, self.init_fm, kernel_size=4, stride=2, padding=1))
        layers.append(nn.LeakyReLU(0.2, True))

        n_in = self.init_fm
        n_out = min(2 * n_in, self.max_fm)

        for n in range(self.n_patch_dis_layers):
            stride = 1 if n == self.n_patch_dis_layers - 1 else 2
            layers.append(nn.Conv2d(n_in, n_out, kernel_size=4, stride=stride, padding=1))
            layers.append(nn.BatchNorm2d(n_out))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            if n < self.n_patch_dis_layers - 1:
                n_in = n_out
                n_out = min(2 * n_out, self.max_fm)

        layers.append(nn.Conv2d(n_out, 1, kernel_size=4, stride=1, padding=1))
        layers.append(nn.Sigmoid())

        self.layers = nn.Sequential(*layers)