def clip_grad_norm()

in src/utils.py [0:0]


def clip_grad_norm(parameters, max_norm, norm_type=2):
    """Clips gradient norm of an iterable of parameters.
    The norm is computed over all gradients together, as if they were
    concatenated into a single vector. Gradients are modified in-place.
    Arguments:
        parameters (Iterable[Variable]): an iterable of Variables that will have
            gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm.
    """
    parameters = list(parameters)
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    if norm_type == float('inf'):
        total_norm = max(p.grad.data.abs().max() for p in parameters)
    else:
        total_norm = 0
        for p in parameters:
            param_norm = p.grad.data.norm(norm_type)
            total_norm += param_norm ** norm_type
        total_norm = total_norm ** (1. / norm_type)
    clip_coef = max_norm / (total_norm + 1e-6)
    if clip_coef >= 1:
        return
    for p in parameters:
        p.grad.data.mul_(clip_coef)