in src/utils.py [0:0]
def clip_grad_norm(parameters, max_norm, norm_type=2):
"""Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Arguments:
parameters (Iterable[Variable]): an iterable of Variables that will have
gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm.
"""
parameters = list(parameters)
max_norm = float(max_norm)
norm_type = float(norm_type)
if norm_type == float('inf'):
total_norm = max(p.grad.data.abs().max() for p in parameters)
else:
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm ** norm_type
total_norm = total_norm ** (1. / norm_type)
clip_coef = max_norm / (total_norm + 1e-6)
if clip_coef >= 1:
return
for p in parameters:
p.grad.data.mul_(clip_coef)