def save_best_periodic()

in src/training.py [0:0]


    def save_best_periodic(self, to_log):
        """
        Save the best models / periodically save the models.
        """
        if to_log['ae_loss'] < self.best_loss:
            self.best_loss = to_log['ae_loss']
            logger.info('Best reconstruction loss: %.5f' % self.best_loss)
            self.save_model('best_rec')
        if self.params.eval_clf and np.mean(to_log['clf_accu']) > self.best_accu:
            self.best_accu = np.mean(to_log['clf_accu'])
            logger.info('Best evaluation accuracy: %.5f' % self.best_accu)
            self.save_model('best_accu')
        if to_log['n_epoch'] % 5 == 0 and to_log['n_epoch'] > 0:
            self.save_model('periodic-%i' % to_log['n_epoch'])