in src/training.py [0:0]
def save_best_periodic(self, to_log):
"""
Save the best models / periodically save the models.
"""
if to_log['ae_loss'] < self.best_loss:
self.best_loss = to_log['ae_loss']
logger.info('Best reconstruction loss: %.5f' % self.best_loss)
self.save_model('best_rec')
if self.params.eval_clf and np.mean(to_log['clf_accu']) > self.best_accu:
self.best_accu = np.mean(to_log['clf_accu'])
logger.info('Best evaluation accuracy: %.5f' % self.best_accu)
self.save_model('best_accu')
if to_log['n_epoch'] % 5 == 0 and to_log['n_epoch'] > 0:
self.save_model('periodic-%i' % to_log['n_epoch'])