generation/models/networks.py [331:343]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
                 norm_layer(ngf), nn.ReLU(True)]
        ### downsample
        for i in range(n_downsampling):
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2), nn.ReLU(True)]

        ### upsample
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
                       norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



generation/models/networks.py [403:415]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
                 norm_layer(ngf), nn.ReLU(True)]
        ### downsample
        for i in range(n_downsampling):
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2), nn.ReLU(True)]

        ### upsample
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
                       norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



