in passage_retrieval.py [0:0]
def embed_questions(opt, data, model, tokenizer):
batch_size = opt.per_gpu_batch_size * opt.world_size
dataset = src.data.Dataset(data)
collator = src.data.Collator(opt.question_maxlength, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, drop_last=False, num_workers=10, collate_fn=collator)
model.eval()
embedding = []
with torch.no_grad():
for k, batch in enumerate(dataloader):
(idx, _, _, question_ids, question_mask) = batch
output = model.embed_text(
text_ids=question_ids.to(opt.device).view(-1, question_ids.size(-1)),
text_mask=question_mask.to(opt.device).view(-1, question_ids.size(-1)),
apply_mask=model.config.apply_question_mask,
extract_cls=model.config.extract_cls,
)
embedding.append(output)
embedding = torch.cat(embedding, dim=0)
logger.info(f'Questions embeddings shape: {embedding.size()}')
return embedding.cpu().numpy()