def embed_passages()

in generate_passage_embeddings.py [0:0]


def embed_passages(opt, passages, model, tokenizer):
    batch_size = opt.per_gpu_batch_size * opt.world_size
    collator = src.data.TextCollator(tokenizer, model.config.passage_maxlength)
    dataset = src.data.TextDataset(passages, title_prefix='title:', passage_prefix='context:')
    dataloader = DataLoader(dataset, batch_size=batch_size, drop_last=False, num_workers=10, collate_fn=collator)
    total = 0
    allids, allembeddings = [], []
    with torch.no_grad():
        for k, (ids, text_ids, text_mask) in enumerate(dataloader):
            embeddings = model.embed_text(
                text_ids=text_ids.cuda(), 
                text_mask=text_mask.cuda(), 
                apply_mask=model.config.apply_passage_mask,
                extract_cls=model.config.extract_cls,
            )
            embeddings = embeddings.cpu()
            total += len(ids)

            allids.append(ids)
            allembeddings.append(embeddings)
            if k % 100 == 0:
                logger.info('Encoded passages %d', total)

    allembeddings = torch.cat(allembeddings, dim=0).numpy()
    allids = [x for idlist in allids for x in idlist]
    return allids, allembeddings