lib/optim/extragradient.py [205:248]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if p.grad is None:
            return None
        grad = p.grad.data
        if grad.is_sparse:
            raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
        amsgrad = group['amsgrad']

        state = self.state[p]

        # State initialization
        if len(state) == 0:
            state['step'] = 0
            # Exponential moving average of gradient values
            state['exp_avg'] = torch.zeros_like(p.data)
            # Exponential moving average of squared gradient values
            state['exp_avg_sq'] = torch.zeros_like(p.data)
            if amsgrad:
                # Maintains max of all exp. moving avg. of sq. grad. values
                state['max_exp_avg_sq'] = torch.zeros_like(p.data)

        exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
        if amsgrad:
            max_exp_avg_sq = state['max_exp_avg_sq']
        beta1, beta2 = group['betas']

        state['step'] += 1

        if group['weight_decay'] != 0:
            grad = grad.add(group['weight_decay'], p.data)

        # Decay the first and second moment running average coefficient
        exp_avg.mul_(beta1).add_(1 - beta1, grad)
        exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
        if amsgrad:
            # Maintains the maximum of all 2nd moment running avg. till now
            torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
            # Use the max. for normalizing running avg. of gradient
            denom = max_exp_avg_sq.sqrt().add_(group['eps'])
        else:
            denom = exp_avg_sq.sqrt().add_(group['eps'])

        bias_correction1 = 1 - beta1 ** state['step']
        bias_correction2 = 1 - beta2 ** state['step']
        step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



lib/optim/omd.py [74:117]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                if p.grad is None:
                    return None
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
                amsgrad = group['amsgrad']

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state['max_exp_avg_sq'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                if amsgrad:
                    max_exp_avg_sq = state['max_exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1

                if group['weight_decay'] != 0:
                    grad = grad.add(group['weight_decay'], p.data)

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                if amsgrad:
                    # Maintains the maximum of all 2nd moment running avg. till now
                    torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
                    # Use the max. for normalizing running avg. of gradient
                    denom = max_exp_avg_sq.sqrt().add_(group['eps'])
                else:
                    denom = exp_avg_sq.sqrt().add_(group['eps'])

                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']
                step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



